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Preface

This is a collection of lectures delivered at the Universidade
Federal de Pernambuco, Recife, Brazil, between 2 November 1981 and 2
December 1981. The visit to Recife was a response to an invitation cf
Professor Gilberto F. de S& of the Physics Department. In the prepara-
tion of these notes I made many requests of the research workers still
at HDL for earlier results and recollections of our early work. Among
those most frequently consulted were Donald Wortman and Nick Karayianis
and I wish to thank them for their prompt responses and their valuable
suggestions. The later work and a critical reading of the entire rough
noteg of the lectures were done by my coworker Richard P. Leavitt. To
him I owe a special thanks for numerous helpful suggestions., A number
of suggestions from my Brazilian colleagues helped make the lectures
more clear. Particular among these were Professor Oscar Malta and
Profegsor Alfredo A. da Gama both of whom I wish to thank for their
help. I would also like to thank Evandro J. T. de Araujo Gouveia for
his suggestions and finding errors in the notes. 1In all of the efforts
to make the lectures more complete I owe special thanks to Professor
Gilberto F, de Sa. Lastly I would like to thank the entire physics
department at the University of Recife for making our stay in Recife a
warm and pleasant experience. Both my wife and myself have never before
experienced such a pleasant display of hospitality. To all the members
of the physics department my wife and I say "muinto obrigado."

P .
IR ,' - . A ‘
Laloae

Nl e Yales
contlentar by Cone
fpyuil mnd/jor
st \ Specﬂal

x
1

RETY %)

/!




CONTENTS

PREFACE S5 00 P 0P 00T PPV OLLORLDIRRENIVYOEII SISO OIIBOIEOIERIOANOISIOEINOSENOES

1.

2.

3.

5.

INTRODUCTION ® 05 08000000 CLS NN LRI EIDEIR0RNN0SOCIBRINBEENSEOIODS

ANGULAR MOMENTUM ALGEBRA ® 5 00088 2L PEDEBNEEEVPENEOLERIOLOESESIOEDETPLIERES

NN

Racah Coefficients
Racah Algebra S 9 0 0 8 0 B P GBS B OO RO OGP O NSO LY EL SO0

1 Angular Momentum OperatorsS cscscssccsscssceasssncscvescncscns
2 Clebsch-Gordan CoefficientsS ceeeessscacassscnsans-
«3 Wigner-Echart TheOXrem scsscesesscsscosccssssscascssssnsossnns
4
5

¢eeveso e

L N N N N N N N N N N N N N NN

FREE-ION HAMILTONIAN S %S 0B E TP PINEOECEEIN O OBENREORCEOEIBOEIOESEIOED

3
3

1 Background for Free Rare-Earth IONnS sceccessvsceesssesconae
«2 Significant Free Rare-~Earth Ion InteractionsS sssessscsoscen

Coulomb Interaction sesceccsccsocsacescscsscsosossccas
Spin-orbit Interaction B G 00 0 2P0 OSSOSO E OB IO NN e
Interconfigurational Interaction .ececsescesssnsosnose

Other Interactiong

0000000860060 8800880000000 000sasaacn

303 Summary @ 8 00000 00000080000 BNEEIEENIIOIIDLIOININOOIRBIERIRNORNSIEOIDPS

CRYSTAL-FIELD INTERACTIONS 000000 CLOENOCINEIOOINSISLTOEIGOBNOSRESEERERSES

4.1 Phenomenological Theory of Crystal FieldS escscescsceavecces

4.1.1
4.1.2

[N -
s e
w N

4.3.1
4.3.2
4.3.3

Matrix Elements of H3

in J StatesS ecevecosssasenescne

Numerical Example: “FJ states of Nd+3 essosseseserone

Classical Point-Charge MOAELl ceeeveccsnccoscnnosssossnnscsces
Point-Charge Model Developed at HDL ccececscovsersocsvessne

INtrodUCLion seeesessscsesssovvaccvosnsscsonssnscvone
Screening and Wave Function Spread feesssRrestonsrre e
Effective Charge and PoSition ssscscssscsvocssnsveee

CRYSTAL-FIELD EFFECTS NOT YET FULLY INCORPORATED eccsesccscsesce

5.1 Self-Consistent Point Dipole and Point Muitipole sescescces
5.2 Self-Consistent Results for Scheelite Structure .cessscesses
5.3 Self-Induced EffectS sessessscscccconscsoscesssssssscsssnssncoes

Page

3

9
1"
11
13
16
18
22
27

27
30

30
31
36
36
37
37
37

39
42

48
54

54
55
56

60

60
64
68




CONTENTS (Cont'd)

Page
6. MISCELLANEOUS CRYSTAL~FIELD EFFECTS ccesvesecocconcoccnsoscsacecsee 74
. Judd's Interaction for Two Electrons seccscssesssessssncess 74

6.1
602 Slater Integral Shifts [ACEC R NIRRT B R A B Y I B B R AR B AN R B BE R NI B S B B ] 79
6.3 Shifts of Energy Gap D P - 1o

LIT‘:RATURE CITED 20 S P SO P PV IO B BN O EEP NSNSl SO PLLIEDNCENSEOS O 87
ANNOTATED BIBLIOGRAPHY © 0 80503 0 PP EPEENET PO LENOTYUEBIEENDREDPERR SO 91 .

DISTRIBUTION T 0660060008 KPGRAOEIINEIT BN PIORPERNERECOEsOtEIIOEDROITTEOISIOEDNTIGDS 121

APPENDIX

APPENDIX A.-~~RELATIONS THAT ARE USEFUL IN ANALYSIS OF RARE-EARTH
ION SPECTRA..'...l.l'.I....‘I‘l.l.......l‘.........l.l 99

APPENDIX B.--ELECTROSTATICS ® 8 5 00820 E PGP ERLLEIINOIRNBENLIOITELNSEIEOESEIOORTEES 107

TABLES
1. Electronic Structure of Triply Ionized Rare~Earth Ions esseeeee 28

2. Relativistic Hartree-Fock Integrals for Triply Ionized
Rare«Earth IONS scessesvsccscnavstosssssccsssossssnsscsasoscses 32 )

3. Nonrelativistic Hartree-Fock Integrals for 'friply Ionized
Rare—Earth Ions T 8 0 00 0000 S5 0SB OB O OO OO LB O LRSS eSS ESSe e 32

4. Free Ion Energy Levels of Triply Ionized Praseocdymium and
Corresponding Centroids in Two CrysStalsS ceveccseccscesscsevses 34

5. Free-Ion Parameters for Triply Ionized Rare-Earth Ions in
LaCl3 Obtained from Fitting EXPErimental DAt cesevocssensassos 35

6. Free-lon Parameters for Triply Ionized Rare-Earth Ions in
LaF4 Obtained from Fitting Experimental Data .scesecssessesces 35

7. Eigenvalues of Casimir's Operators for States of £2 tiieseeasas 36

(RPN S -




i TS, e

8.

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

TABLES (Cont'd)

Nonrelativistic Hartree-Fock Expectation Values of <rk>,

Nuclear Spin, and Magnetic Moments of Triply lonized
Rare-Earth Ions LN B BN O N BN BN BN B BN A BN N B RN R RN NN R B NN N RN RN B N B BN BE R RN N NECRY N R R B BN N B Y BN R BN ) 37

values of <J‘U)(“J>/u+1<zﬁcknz> 000 O8O DS OSSO BE OOV eSS NDEIY S 42

Crystallographic Axial and Angular Relationships and
Characteristic Symmetry of Crystal SYStemS ceceeessccscsccacees 51

Crystallographic Data for LiYF4 Tetragonal Space Group 88

Z = 4 0 S S8 S 000V E LD OIN ST OLVOO00I RO ONELGIEOESIIPIPSEOEIRPIEOEOIEETERTROSDN 52

Lattice Sums for the Y site at (0, 0, 1/2) for LiYF, with
ZY = 3, ZLi = 1' ZF = "1, af = 01104 Aa e e s 080000 ENTBE 52

Crystallographic Data for YCl3 Monoclinic Space Group 12

Z = 4 ® 200 000 OLRB NSO RN COEOONINNONLINNOELIIRNBEOENIOIESIPIBNSRCEROYN 53

Lattice Sume for Y site at (0, 0.166, 0) for YC13, Even-n
Anm Only, All Arlm Real Q9 0 &2 C O S H SO0 00 0SS EES 6O NSRS NEE eSO 54
Phenomenological B, for Six Rare-Earth Ions in CaWO, ¢eceseces 57

Derived Crystal-Field Parameters, Bnm(r;qon), for 4fN
Configurations of Triply lonized Rare-Farth IONS seseecsssases 58

values for T <r">yn, o, and p, for 4f" Configuration of
Trj.Ply Ionized Rare‘Earth Ions "8 0 00 0 0P P SO O CEODPIS PO SOV ESNE e 59

Space Group 88: Cnordinates of All Ions in a Unit Cell of
YLiF, and Dipole Moments of Each Ton ccesececscccsccccccnsvees 64

Values of ﬁ-? for Different Sites in Scheaelite .eesesvecccsssrs 67
G Tensor and X-Ray Data for Several Compounds ssescesescssacees 69

Axial Components of Crystal Field for Two Values of
Polarizability of Oxygen and Oxygen Charge UnitS escessecssssses 69 i




TABLES (Cont'd)

Page

Experimental Energy of Lowest Energy Level of 4fN"15d for

Ftee Ion 08 EO 000NN LLENUNENEOENNP00ICINOIINROIOESIISIOIEOEIOGTRIBOES 83

Ligand Distance, R, and Multiplicity, 2, for Compounds
Listed in Table 22 B0 6000 0RO EOOPD OGS CNOE ISP RN OOOSE OGNS ETEIOIEOCEOINSTEO 84

Sum S of Equation (313) for Values in Table 23, Agd - Afd
from Table 22, and 0, Computed from Equation (311) ssseesecsces 84

!/'
.
8
“ | a2
O, wmeraipitini R AL A T T s R I WL A I L MO TR TR e Y




hr. 4 e o Y R dudal T g - - g s

1

P ————

1. INTRODUCTION

The work at the U.S. Army Harry Diamond Laboratories (HDL) on the
experiment and theory of rare-earth ions in transparent host materials
was begun in the early 1960's. This was after workers at Bell Telephone
Laboratories (Johnson et al, 1962)* demonstrated the first continuous
operating laser using neodymium (Nd) in calcium tungstate (Caw04). It
was decided at that time that the HDL group would concentrate on
Nd:CaWO4. The group was limited in number at any given time, but over
the span of years many research workers were participants. A list of
publications pertinent to the theoretical analysis and experimental work
on triply ionized rare-earth ions in solids is given in the annotated
bibliography.

The plan that the group was to follow during the first two years and
still follows is the following: (1) As many as possible of the rare-~
earth ions were to be doped into the host material Cawo4, and the opti-
cal data were to be carefully recorded. (2) These data were to be
analyzed by any technigques existing in the literature or developed at
HDL to obtain phenomenological crystal-field parameters. (3) A theo-
retical derivation of the crystal-field parameters was to be developed
which gave not only the parameters which were obtained from the experi-
mental data, but also a set of odd-k crystal-field components. (4) The
odd~k crystal-field components were to be used to calculate the electric
dipole transition probabilities using the theory of Judd (1962) and
Ofelt (1962).

As of 1970, all these objectives had been met for CaWO4 {and conse~-
quently to a lesser extent for any solid where the rare-earth ion occu-
pies a site of S, symmetry). During this time, a number of new theories
as well as significant modifications of existing theories were devel-
oped, The most important theory thus developed was the HDL three-
parameter theory of crystal fields. This theory was a blending of the
much older point=-charge model, including “he effects of covalency and
wave-function expansion and screening of the field of the point charge.
These effects were encompassed in the three parameters, and a consistent
set of these parameters was found for the triply ionized rare-earth
series in the host CaWO,. The phenomenological crystal-field parameters
used in the development of the theory were those obtained by using an
effective spin-orbit Hamiltonian developed by Nick Karayianis at HDL.
The optical data were taken by Donald E. Wortman and Ruben T. Farrar of
HDL.

*Because of the large number of literature citations, these are given

in abbreviated form only, not footnoted on each page. Complete liter-
ature references are given alphabetically by author in the Literature
Cited section.
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Since 1970, a number of new additions have been made in the theory,
and the ability to analyze the optical data has been achieved. These
include:

(1) The development of lattice sums (point-charge model) for any
crystalline solid (230 different space groups).

(2) The self-consistent inclusion of the dipole fields for any
crystalline solid.

(3) The calculation of the phenonmenological crystal«field param-
eters from experimental data for any solid having point sym-
metry higher than C; or C,.

(4) The calculation of transition probabilities, Zeeman splitting
factors, Judd-0Ofelt intensity parameters, branching ratios, and
lifetimes for any point symmetry higher than C, or Ci'

Of the recent work at HDL done on rare earths, the most significant
is the work done on rare-earth ions in lanthanum trifluoride (Ln:LaF3,
Ln=rare-earth ion) (C, symmatry) and reported in two papers. Morrison
and Leavitt (1979) reported an analysis of the low-temperature optical
data which had been previously reported by workers in other laboratories
(very much by W. T. Carnall of Argonne National Laboratory). In our
analysis, the point-charge lattice sums were used to obtain starting
crystal-field parameters in a least-squares fitting. Conseguently, sets
of crystal-field parameters for almost all the rare-earth ions were
obtained which were consistent through the entire series. 1In the second
paper (leavitt and Morrison, 1980), the results of the lattice sum for
the odd-k crystal-field components were used to calculate the Judd-Ofelt
intensity parameters and lifetimes for the entire rare-earth series.
Wherever possible, these were compared to experimental data, and the
agreement was found to be very good.

At present, with J. B. Gruber and N. C. Chang, we are analyzing data
on triply ionized rare-earth ions in yttrium oxide (Y203). This mate-
rial has two types of sites that the rare-earth ion can occupy, 02 and
Cyi+ A paper on "The Analysis of the Spectra of Kramers Ions in the C
Sites" has heen published (Chang, Gruber, Leavitt, and Morrison, 1982).
A second paper, "Optical Spectra, Energy Levels, and Crystal-Field
Analysis of Tripositive Rare-Earth Ions in Y,0;. II. Non-Kramers Ions
in C, Sites" has been published (Leavitt, Gruber, Chang, and Morrison,
1982). We are now writing a third paper on the rare-earth ions in Y 04
for the rare-earth ions in the C,3; sites. This latter paper also wfll
summarize all the work on C, sites.

If we find time and money, we intend to extend our computation
ability to incorporate more of the free-ion interactions. Also, we
would like tc incorporate in our programs many of the theories that we
have developed at HDL over the last few years. The inclusion of the
self-consistent dipole contributions to our theory of crystal fields
should improve both the energy-level calculations and the transition
probabilities.

10
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2. ANGULAR MOMENTUM ALGEBRA

2.1 Angular Momentum Operators

In classical mechanics, the angular momentum of a particle is
defined by

?=rxp. (1)

Actually, we should specify that the anqular momentum so defined is
about a particular origin, and ¢ is the vector distance from the refer-
ence point to the particle with momentum 5.

If we use the commutation relations

[xi,pj] = rﬁdij (2)
with Xy = X, y, or z, then we can obtain the commutation rules for
angular momentum,

[zx,zy] = ML, [2y,zz] = ifg_, and [ ,2 ] = LT (3)

which are the basic commutation rules for the Cartesian components of
the angular momentum. For convenience here we shall drop the fi in the
commutation relations. This does not mean that we drop fi throughout; we
restore A simply by writing the interactions involving the angular
momentum so that the i is contained in the constants. As an example of
this, we consider the spin-orbit Hamiltonian

1 1
H2='——2—-2-;%E'; R (4)
2mcc

with I and & (the spin angular momentum, 3, we will discuss later)
contgining A as in equation (3). When written in terms of unitless
and s, we have

2
A2 1wy

2 om2a2 r dr

(5)

where 1 and 3 obey the commutation rules in equation (3) but i = 1.

For our purposes here, we want to use the spherical represen-
tation of 2, which is given by

b, =~ ;% (4, + 12,)
Yo = A v (6)
., = ;% (2, - 12,)
11




and the commutation rules are

(7)
(2,02 ,] = -2

The eigenfunctions of the angular momentum are the spherical
harmonics, Yzm(6,¢) and

L,18m> = ml2m> ,
(8)

gy lim> = 7 =L ramm) (eme1)1Y/2 [eimer>

N

where

fam> = Yzm(e‘¢) .

Frequently, we shall use the unit vector r to indicate the argument
of Yzm' thus:
Yom(8:9) = Yo (x) .

When the Y, are wave functions such as in equation (8), we have

m
Yzm(r) = | fm> .

The wava functions have the property that

<L'm'|im> = (SUL' 6mm'

Further, we shall assume that the spin angular mc.aentum, g, vbeys the
same commutation relations as equation (7); che two-component spinor
wave functions are represented by the wave function Isms>, so that the
single electron wave function for orbital and spin angular momentum is
. 9
|lml>|sms> (9)
The wave functions given by equation (9) then obey the following:

> > L m >
lollmz Isms = m£i~m£>ls &

(10)

2 =
b Izm2>|sms> £(2+1)|zm2>|sms> .

12

%



s jAm.> > m m. >|sm >
0'2 £ lsms = sll L | s !

(3)2)2m,>}sm > = s(s+1)|2m,> |sm >
] 2 s !

2

where, of course, s = 1/2. A further property of the spherical har-
monics is

(1) = (-Dhy, (5, (11)

where the inversion operator is I; = -;, a property that will be used
frequently in our analysis. While many of the interaction terms of the
Hamiltonian were derived by using spherical harmonics, it is convenient
to introduce the tersor operators

Con(T) = /53T Yy (x) (12)

Since Y;m(;) = (-1)mY£'_m(;) , we have
Com(X) = (=1, _ (1) . (13)

The use of C a rather than ‘12 in the interaction terms eliminates
almost all the  factors of 4w, Rn example of this is the coupling rule
for spherical harmonics (Rose, 1957: 61):

(2k+1)(2n+1)] 172

I
Y Y = =
kq nm g L an(28+7) (14)

x <k(0)n(0) |£(0)><k(Inim) [2(asm)>Y, oon o

but

cchnm = E <k(0)n(0)|£(0)><k(q)n(m)|1(q+m)>cz'q+m . (15)

In equations (14) and (15) all the tensor operators have the same argu-
ment.

2.2 Clebhsch-Gordan Coefficients

For our purpose, it is convenient to define the Clebsch-Gordan
(C-G) coefficients as the coefficients in the transformation from two

13
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F angular momentum spaces, say, E and 3, to form the composlite space 3.
4 That is,

l3m> = § <2(w)s(m=p)|j(m)>I2w>Is,m~p> , (16)
u

where the quantity <f2{u)s(m-p)lj(m)> is a C-G coefficient. Since we
wish to have ortiuonormal basis, we have

R ————

<j'm'|m> = §,.,6

j3' mm? (17) 1
= J au)s(mep)|i(m)><t(u)s(m'=p") ]| " (m*)> i
up' ]
since i
! 1
: <Ap'lp> = 6§ nd <« TN -u> = § (18) |
M u S a s,m'-p'|s,m~u> = me-y,mt -yt ‘
Thus, we have
ij, = J <8(ws(m=p) | J(m)><L)s(m-p) [§* (m)> (19)

u |

an important and very useful resglt. If we assume (cqfrectly) that the
same coefficients connect the j space to the I and s spaces, we can
obtain another condition on the C~G coefficients, namely,

S0 85gr = § <2(mz)s(ms)|j(m£+ms)><2'(mz)s'(ms)|j(m2+ms)> . (20)

Some other relations among C-G coefficients are

<ca{a)b{R)lc(y)> = 0 if Jal > a, or |B} > b, or |yl > ¢

and if Yy ¥ a + B .

The C-G coefficiernts vanish unless the three angular momenta obey the !

triangle condition, or |a ~ b] ¢ ¢ ¢ a + b and any permutation of a, b, .

or c¢. Further properties >f the C-G coefficients are given in appendix , '

A. .
The commutation relations for the spherical components of the

angular momentum of a single electron given in equations (7) and (8) can

be written compactly in terms of C-G coefficients as

[zu,zv] = V2 AW HTGH>L L (7a)

14
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and

[au,sv] = V2 SRRSO EL I (8a)

The total angular orbital momentum operator for a system of N electrons
is

N
=74 , (21)
i
and the total spin angular momentum operator is
N >
=78 . (22)

i

The spherical components of these operators obey the same commutation
relations as equations (7a) and (Ba), or

[Lu,Lv] = V2 AL (23)

and

[su.su] = /2 s (24)

Also, it should be noted that

[Lu,lv(i)] 72 <D k)L L (4) (25)

and

(1) . (26)

[Su,sv(i)] V2 UV [T tv)ds

Consequently, from using equations (23) through (26), we have

[Lu,ckq(i)] = vk(k+1) k(@) 1) Pe(qru>c o (1), (27)
[Ju,ckq(i)] - [Lu,ckq(i)] (28)

with
J=1+% . (29)

15
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2.3 Wigner-Echart Theorem

The Wigner-~Echart theorem states that if we have a spherical
tensor Ty in the space spanned by the wave functions |IM>, then the
matrix elements are

<J'M'|qu|JM> = <J(M)k(q)lJ'(M')><J'lTkIJ> . (30)

The projection (q) dependence is contained in the C-G coefficients, and
the factors <J'lTkEJ> are called the reduced matrix elements. .

If we have a mixed spherical tensor, rank x, projection A, in
spin space and rank k, projection q, in orbital space, the Wigner-Echart
theorem then is

T

Tt [NV ] Kk
<L MLS MS|TXq|LMLSMs>

= <L(M_ Jk(q) IL* (M} }><s(M )N 18" (Mg)> (31)

x <n's It s> .

Since the C-G coefficient is purely a geometrical factor, all the phys-
ics is contained in the reduced matrix element. The Wigner-Echart
theorem alliows the extraction of the geometrical factors from many
complicated matrix elements; it also serves as perhaps the main motiva-
tion for the development of Racah algebra in dealing with angular momen-
tum states.

Because of the power of the Wigner-Echart theorem, it occurred
to Racah to cast the various operators representing the interactions in
terms of universal quantities that could be tabulated for a frequently
used many~particle system. Toward this end, Racah introduced the unit
spherical tensors for the electronic configuration niN which we define

as

<z’m'|ukq|£m> = <2(u)k(q)|£(m')>6£z.

for the orbital space and
<£'m's'mi|v”k|£msms>
Aq

= < (m)k(q) L (m*)><s(m ) (X)[s(m})> (32)

X 8pp18agr

for orbital and spin space.
1le
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The generalization to an N-electron system is simply

N
t ™ i
Ueq g “kq( )

N
Kk xk .
qu = E vxq(i) . (33)

A simple and often used example of these tensors in orbital space ig (we
shall omit the upper limit on the i sum in the remainder of the discus-
sion)

fi

) Chq'H)

) )) LACHLEECNMEY

i
» {34)

<2ICkI£>qu

where

<L2(0)k(0)]2(0)>

<2HCkN2>

L Yoro(1)
U i u
g <2!2ll>u1u(i) (35)
<N >U , and
1

Ye(e+1) .

<SANRUL>

An example of a tensor in a mixed spin and orbital space occurs
in the hyperfine interaction Hg, given by

&
Ho = (28B1,/1) z ni-i/rg . (36) .
where B i3 the Bohr magneton, is the nuclear magneton, Wy is the 3
nuclear moment, and I is the nuclear spin. Now
e +> L <
- - [ 2
N, Ii s, + 3r1(ri si)/r1 (37)
17
|
2 4




ST T

or

Ng(i) = 2g(1) - /70 % <1v)2(q=v) [ 1(q)>8,(1)Cy (1) {(38)
(we shall show later how eg (38) is obtained from eq (37)).

The part of N_(4i) containing £4(i) can be written in terms of

U1q, as in the second part of equation (35):

) s,(1)¢, (1)

q=-v
t (39)
= , 1 2
<sﬂsﬂs><£lcznk>vv'q_v
> >
A component of N = Z Ni can be written
: i
Ny = YR(RHT) vy, - /10 /s(s+1)<5(0)2(0) | 2(0)>
(40)
- 1 2,
x E <1(v)2(q v)|1(q)>Vv'q_v
Thus, equation (36) can be written
= 3
He = (2BBgu/I)<1/r?> g N I3 (41)

with Nq given by equation (40).

2.4 Racah Coefficients

The Racah coefficients arise in the coupling of three angular
momenta (Rose, 1957: 107) to form a final resultant. 1In the coupling of
the angular momenta, we consider two coupling schemes:

scheme A: 51 + 32 = 312, 512 + }3 = 3 ’ (42)
scheme B: 51 + }3 = ;13: 513 + 52 = ; . (43)

Coupling scheme A is represented by the wave function

1> = L <dymg)3y(my) 13, (mpdmy )53 (mytmy )35 (my ) 13 (m) >
m, m,m, (44)
x |j1m1j2m2j3m3> 7

scheme B is represented by the wave function

18
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i8> = §

¢3y(my)ig(my )13, 5 (mptmy )o<y, (mobmy )3, (m, ) 13 (m)>
MMM

(45)
x |j1m1j2m2j3m3> .
The coupling schemes A and B are connected by a unitary transformation

B> = § <alB>|A>

(46)
A

the coefficients of the unitary transformation are determined by taking
the inner product of equation (44) with equation (45).

We define the Racah coefficients as follows:

W(34392373337343) = [(2j12+1)(2j13+1]]172 @l . (47)

Thus,

[(2j12+1)(2j13+1)]1/z w(j2j12j13j3'j1j)

) m§m2 <39 (my )35 (my )1 345 (mymy)> <35 (mytmy )35 (momy=my )1 3(m)> (4

X <j1(m1)j3(m-m1-m2)|j13(m-m2)><j13(mvm2)jz(mz)Ij(m)> o
The following equation can be obtained from equation (48):

<jz(m2)j1(m1)ij12(m1+m2)><j12(m1+m2)j3(m-m1—m2)Ij(m)>
= jg [(234541)(2373%1) 112 0(3,343337312343) (49)
3

x <j1(m1)j3(m—m1-m2)|j13(m-m2)><j2(mz)j13(m—m2)|j(m)>

’

which is a relationship used often in our analysis.

The Racah coefficient is related to the symmetrized "6j" symbol
by the following equation:

‘ = (_yatbtc+d 1a b e
W(abcdjef) = (-) {30 ¢l

(50)
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Certain symmetry relations exist for the "6j" symbols:

: 3p3p 33| P2t | Prdid] At b (51)
L Ly %y 24 Ly B4 4y by %43 % Ly 35 34
and all combinations of the relations in equaticn (47). The four triads

] (j h P | ), (j £, & ), (l 3, & ) and (z £, 3 ) must be able to form
a grigngfg. Tth 35,3 12 T 17273

lj1"j2' < j3 £ j1+j21 (52)
with similar relations for the other triads.

An example of the use of Racah coefficients is in the calcula-
tion of single-~electron matrix elements of the operator

Beig = § <k(@-M 1A k' (Q)>C &y e

which arises in numerous applications. We consider the matrix element

<£'m'|Ek,q|£m> = <£(m)k'(q)|2'(m')><£'IEk,l£> (54)

by application of the Wigner-Echart theorem, equation (30). Also, by
taking the same matrix element of equation (53) we have

r = - L ' I
<'m'|E,, [m> § <k(g=M) 1A [k (@)><hrm [Cy (2, 14> . (55)

Now we further consider the matrix element in equation (55) to obtain

tmt = Tyn ¢ LF LY (L] > ’
<armtfe, 4y lm> 2gm”q L R A NN (56)

where we have used matrix algebra on the product of two operators. If
we apply the Wigner-Echart theorem to the last matrix element in equa-
tion (56), we obtain

<a"m |4, 1> = <A(m)T(A) [ £ (m")>8, , <RARNE> 5 (57) e
also, m" = m + A as required by the C-G coefficient. It can be shown
that
CLNLAL> = VL(R+1) . (58)
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/2T (59)

<2"m"|2A|2m> = <£(m)1(A)|1"(m+A)>Gz
Using these results in the remaining C-G in equation (56), we have
<'m'|c [2(m+A)> = <R(m+Adk(g=A) |27 (m')><R UC, K> . (60)
kIQ"A k

Substituting the result of equations (60) and (59) into equation (56},
we have

<2'm'le'q_A2A|£m> = /A(LF1)<RTIC 1R><R(m)1(X) | £ (mFA)>

(61)
x <R(m+N)k(g=A)|L"(m")>

giving the matrix element in equation (55}. If we substitute the result
of equation (61) into equation (55), then we have

<z'm'|Ek,q|zm> = /2(4+1) CR'UAC 1A>S (62)
where

s = Z <k(g=A) 1A k' (@)><a(m) 1(A) | 2(m+A)><L(m+)k(g-A) [ L' (m*)> . (63)
A

The last two C-G coefficients in equation (63) can be recoupled by using
equation (49) or

<L(m)1(A)Y | L(m+A)><2(m+ ) k(g=X) | L" (m")>

= z VI2E+1) (2041) W(R1L'k;2E)<A( M k(g=A) | £(q)

£ (64)

x <AmM)E(Q) L' (m*)> .

The C-~G coefficients in equation (64) can be rearrxanged by using the
symmetry rules to ¢.ve

1+k-f

<H M k(g=A) | £(q)> = (=1) <k(g=A) 1A If(q)> (65)

This C~G coefficient and the first C~G coefficient in equation (63) are
the only two C-G coefficients containing A, so that

z <k(g=M)T{N) k" (g)><k(g=M)1 (M I£f(q)> = 6fk' (66)
A
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because of the orthogonality, as shown in equation (19), of the C-G
coefficients. Thus, we get

s = (=) VR THOTII (2R 1) WIR12 Kk K" ) <A(mIK’ () ] &' (m')> (67)

which when substituted into equation (62) gives

X!
<2'm'|Ek,q|£m> = (-1)1+k k YR(L+1)(22+41)(2k"+1) W(212'k;2k')<£'ﬂckﬂ2> .

x <L(mk'(g) 12" (m*)> . (68)

Upon comparing the result given in equation (54) with equation (68), we
have

CAIE D = (=) RR grny 2ae ) (26410 /2 <atic e 6o

x W1k 2k*) ,

which is a useful relation if we wished to express the tensor Ep in
terms of unit spherical tensors; in that case we would specialize equa-
tion (69) to &' = £ and simply replace Cxq in equation (34) by E, with
the reduced matrix element given by equation (69). We shall have fre-
quent occasion to express our results in terms of Racah coefficients by

using equation (49).

2.5 Racah Algebra

It is convenient in many vector problems to express the vectors
in terms of spherical bases given by

~

ey = $(;x t iéy)/fi ’

-~ ~ (70)
eo = ez .
Then é:‘ = (_1)“;'” ’
L] ./’
e, xe, = =-1V2<1 (W) () [ 1 (p+v)> (71)
efve, = &,

&>
The vector A can be written

22
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v (72}

and

&

B

] A*B
poww

=EAB*
7
" U (73)

= - u .
E (-n)"_ B

Thus, I-g in equatinn (5) can be written

18 =7 s, (74)

so that the spin-orbit interaction given in eguation (5) is immediately
in spherical tensors, since lu and su are spnerical tensors.

As an application of Racah algebra and some of the other mater-
ial discussed above, we shall derive the gradient formula (Rose, 1957:
120). A convenient form for the gradient operator is

exk

) .
V—r'é*;-l T ’ (75)
and we would like
grad ¢(r)Cyq(r) = [V,4(r)Cq] . (75)
Firgt we observe that
rc, =7 (-1 ¢ .c
kg -2 1A 7kq

by

= 3 (—1)A;_A<1(0)k(0)|k'(0)><1(k)k(q)Ik'(q+x)>C (77)

Aok k', gq+r '
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where we have used the coupling rule for spherical harmonics, equation
(15) (Rose, 1957: 61). Now we write

- _ _ G+B ~ - .
rxl= 0% e xegp, 2. (78)
ap
we use equation (71) to eliminate the cross product to produce
~ _ -— A ~
rxi=-1/2 J (-n*1x )l 1Ayec, 2, (79)

Asa

where we have replaced the sum on B by letting R = A - g. Now in calcu~
lating the commutation we need only consider the operators in equation
(79); thus, we need

[C1—a£a—k'ckq] . (80)

Since ¢(r) commutes with C _.%,_ . we need not consider it at present.
First we expand the commutator to obtain

[C1-a£a-x'ckq] - C1-a2a—kckq - cch1-a2a-k d (81)
we then use
2a-Ackq = [za-A'ckq] + quza-k (82)
in equation (81) to obtain
= - 0 .
[c1-a£a—k'ckq] C1-a[za—k'ckq] + C1—ackq2a-l quc1~a"a-k (83)

The last two terms cancel since C and qu commute, Thus, we obtain

1-a
[C1_ala_)‘,ckq] = C1_alza_A,qu] (84)
= Cy_o/KORFTT <k(@)1(a-A) k(qta=A)>Cy oy (85)

where we have used equation (27) with Ly-y = £4-) (Which are identical
in the commutation brackets). The result in equation (85) is not quite
in the form we want, but by using the coupling rule for spherical har-
monics given in egquation (15), we finally obtain

[°1-ala-x'°xq] = VK{KFT) <k(q)1(a~A) [k(g+a=A)> (86)

x ] <k(0)1(0) [k"(0)><k(g=a~}) 1(=a) |k"(q-A)Cym
k“

:CI'}\
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In equations (75), (76), and (79), we need
-'
[rxf,ckq] i (87)

we can see from equations (86) and (79) that, when this is formed, the
termns dependent on a are
S = ) <1(a~A)1(=a) | 1(A)><k(qg) 1(a~) [k(q+a=A)>
@ (88)

x <k(g+ti-a)1(-a)lk"(g=X)> ;

that is,
(Bt ] = ivZ T (-1 ey <k(0)1(0) k" (0)>/KTRF 1)
q A,G,k"
(89)
X SCk..’q_)‘

with 8 given by equaticn (88). The sum, S, given by equation (88) can
be reduced. First we write

<k(@)1(a=\) |k (g+a=A)><k(q+a=2) 1(=a) | k" (g=-))>
(90)

= ) YTZEFTI(2Kk+F1) W(KIK"1;KE) <1 (a=A) 1(=a) | £(=2) ><k (@) E(=A) [ k" (g=N)> ,
£

where we have used equation (49). Thus, the sum over a contains the
terms

L <10a=M)1(=a) [1(=2)>< 1 (a=) 1(=a) [ £(=2)> = &, (91)
Qa

by the orthogonality of the C~G coefficients. We can use equations (91)
and (90) in equation (88) to obtain

S = V3(2k+1) W(kk"1;k1)<k(@)1(=N) k" (g=A)> . (92)

Using the results of equation (92) in equation (89) gives

(B, ] = L/BRTFTIZRFTY | (=1)he_; T <k(0)1(0) [k(0)>WekTk"1:k1>
k k“

X <)) K" (@+A)>Cpm oy s (93)
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where we have changed the sign of A in the sum. Multiplying the results
given in equation (93) by -i¢(r)/r and combining them with equation
{33), we have (changing k" to k') /

N 3
v, 9lr)cC =7 (=1)e_ —2-+-£/6k(k+l)(2k+17 w(k1k'1;k1
kq i A o r

ar
(94)
x <k(0)1(0)lk'(0)><k(q)1(k)3k'(q+X)>Ck.,q+A

The Racah coefficients in equation (94) are of simple form and are given
by Rose (1957: 227). These are

1/2
Wiktk*'1;k1) = = [m] R k* =k + 1
+1 /2 . (9%)
= [éi%iiITT] ‘ ki =k~

which are the only values of k' allowed. These results used in equation
(94) can be written as

xS
[v,¢(r)ckq] = ; (-1)"e_

k' o [ kt1 (3 _k ' o= :
D kel (3r r) v k kK +1 , (96a) .
K % /3 . k+1 C o

D o (ar + 5 ) , k' =k -1 , (96b)

and we have used the result

[ k+1
<k(0)1(0) | k+1(0)> = « PYrY and
- / k

2k+1

{from Rose, 1957: 225). The two most common forms of ¢(r) that we will v
éncounter are r—- and 1/tk+1. For $(r) = r° , we obtain ’

kl
\ E'<k(q)1(k)Ik'(q+k)>Ck,’q+AD o) (96)

where

<k(0)1(0) | x=1(0)>

[Vu,:kc -1

N Ty - k
= Yk(2k+1) <k(q)1(u) |k=1(q+u)>r Ck-1,q+u p

(97)

kq]
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and for ¢ = 1/rk+1c

2

k+1 ——— k+
[Vu,1/r qu] = = (k1) (2k+1) <k(q)1(p) Ik+1(q+p)> 1/ Chat, qhu ng)

The results given in equation (98) are easily checked for k = 0, since

for X = 0 we have

- - 2
[Vu.1/r] O@ru gt /eie, Lo (98a)

and from the properties of the C-G coefficients, we know that q = o

and <0(u)1(u)l1(u)> = 1. Then

= - 2,
[VU,1/r,C1q] €/t (28b)
Also, we know from vector analysis that
grad 1/r = =£/r3 (98¢)
and
> _ - ul
T=1r ) (=1) e ,Cry - (984d)
Then we substitute equation (98d) in (98¢c) to obtain
(98e)

rad 1/r = =C r?

(g / )u 1u/ ’

which is identical with the result of equation (98b). We shall use the
result given in equation (94) frequently later on, particularly in the

form given in equations (97) and (98).

3. FREE-ION HAMILTONIAN

3.1 Background for Free Rare-~Earth lons

The approximations made in the analysis of rare-earth ions are
not new. In fact, they go back to the o0ld Bohr orbit theory. Since
many of you may not be familiar with these assumptions and may not
remember nany of the concepts and much of the technical jargon used in
the field of atomic spectra, I will review some of these briefly.
Although generalities may exist, I will stick strictly to those concepts
which apply to rare-earth ions or, more strictly, triply ionized rare-

earth ions. The triply ionized rare-earth ions are characterized by the

electronic structure shown in table 1.
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TABLE 1. ELECTROMIC STRUCTURE OF TRIPLY IONIZED
RARE~EARTH IONS

Number Element Symbol Outermost electron shell
57 Lanthanum La 4d104£0552556
58 Cerium Ce 4a104afl5525,6
59 Praseodymium Pr 4d!04£25525,6
60 Neodymium Nd 4d104¢£35525,6
61 Promethium " Pm 4d104¢45525p6
62 Samarium Sm 4d1°4f5592595
63 Europium Eu 4al04£65525,6
64 Gadolinium Gd 4d104£75525,6
65 Terbium Th 4al04£85525p6
66 Dysprosium Dy 4a104£95525,6
67 Folmium He 4d1°4f1°5525pG
68 Erbium Er 4a'04f i l5g25,6
69 Thulium Tm 4al04f£l25525,6
70 Ytterbium Yb 4ai04£135425,6
71 Lutetium Lu 4al04flu5525,6

In the rare-earth series, it is assumed that the atomic inter-
actions are very strong; thus, when an ion is placed in a crystal, the
crystalline electric field acts as a perturbation on the ion. This
agsumption allows the notation developed for the free ion to be used
with the reservation that many of the "good" quantum numbers of the free
ion are not quite good when the ion is present in the crystal. It is
assumed that the free rare-earth ions have the zeroth-order Hamiltonian

2
N pi
HO = 121 Zl\- + U(ri) ’ (99)

where Ei is the momentum of the ith electron and U(r;) is an appropriate
spherical average potential of the remaianing (other than the N, 4f)
electrons in the ion. The single-electron solutions to equation (99)
are taken in the form (Schiff, 1968)

V=R (XY, (r) , (100)

2
where the Yzm(r) are the spherical harmonics with L = 3 for f electrons.
(Remember that £ = 0 for s, £ = 1 for p, and £ = 2 for 4 electrons.)
The radial functions in eguation (100) are taken to be the same for all
the f electrons in the ion, while the angular functions, along with the
spin of each electron, must form a determinantal function so as to ovbey
the exclusion principle. Depending on whatever determinantal function

28




is chosen, the radial functions can be found by some self-consistent
method. These radial functions (Freeman and Watson, 1962; fraga et al,
1976; Cowan and Griffin, 1976) have been found_ for the Hund ground
stag&s of all the rare earths from cerium (Ce3+) through ytterbium
(Yb” ).

The Hund ground state for the rare-earth ions with N £ 7 is
given by assuming that all N sgpins are parallel and that each angular
momentum projection is the maximum allowed by the exclusion principle.
(In eq (100), 2 is the angular momentum and m is its projecticn.) Thus,
the Hund ground state for two electrons is the determinantal function

a(\)Yz,2(1)a(2)YE' (2) ,

(2) - a(h)y, , (Dat2)Y,

-1 £ 2

where a is the spin "up" wave function (B = spin "down"). A convenient
notation for such a determinant is

{5.5—1} ' (101)

where the upper sign is the spin projection (+ = up, - = down) and L and
L~1 are the z projection of the angular momentum (m in eq (100))., Thus,
the Hund ground state equation (101) for 4f“ praseodymium (Pr3+) has
total spin, S, and tctal angular momentum, L, given by

1/2 + 1/2 = 1,
L L+ 2 -1=24~-1=5 (for £, £ = 3) .

Hence, the ground state is L = 5, with multiplicity of 28 + 1 = 3, 1In
the so-called Russell-Saunders notation, this state is referred to as
3, as given by the table:

Total angular momentum, L, of ion 01234567+ ...
Russell~Saunders label for the state SPDFGHIKG .+ o
(continues alphabetically).

In this notation, the technical reference to such a state is a term;
other terms for Pr + are 'I, 3P, and 1S {Condon and Shortly, 1959). For
the ion Ce3+, which has one f electron, the atom notation becomes iden-—
tical to that of the ion, that ig, ¢ = L = 3 and 8 = S = 1/2 with the
single term “F. Those ions in the series for N > 7 have the same terms
as for N < 7, and their Hund state can be constructed simply as

{i’t-1,t'2' e o -,t-(21+1)7iyi"1, . o -,z-p""‘} ’ (102)

where the number of f electrons is N = 7 4+ p. The lN shell is com~
pletely filled when N = 2(22+1), which for f electrons is triply ionized
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lutetium (Lu3+)- As an example, consider triply ionized terbium (Tb3+),
which has the 4€£8 configuration. The determinantal wave function is

+E+E O+ o+ -
{3210 -1 -~2=3 3} ’ (103)

where total angular momentum L = 3 and total spin angular momantum
S = 6/2 = 3, Thus, the Hund ground state is ‘F. In all cases, the Hund
term has been found to have the lowest energy in atomic systems. In
general, the wave functions for the higher terms are very difficult to
construct, Dbut sophisticated techniques have been devised for the
orderly development of a set of wave functions for each ion in the
entire rare-~earth series (Nielson and Koster, 1964). The Hamiltonian
given in equation (99) has the same value for all tevrms of the configu~-
ration 4fN; consequently, we ignore H, in the future discussion.

3.2 Significant Free Rare-Earth Ion Interactions

2.2.1 Coulomb Interaction

The largest coniribution to the Hamiltonian for a rare-earth
ion is the electrostatic interaction of the 4f electrcns, which may be
written

2
= v e
Hy = .2. R . (104)
i>3 ri rJ
where
fij = fi—fj .

The matrix elements of this interaction for the state {§ 5} (the 34
term) of Pr * are

3 3 = - - 5 -
< HIH1| 4> FO 25F2 ~1F4 135‘6 ' {105)

where the F, are frequently referred to as the Slater paramzters. These

F. are related to the parameters F'"° (also frequently referred to as
"Slater integrals”) by the following:

X . (0) = t2) (4)
Fo = f » Fy =F 4
(This relation is strict&¥ for £ electrons; a differeant relation exists

for d eleckrons.) The F are radial expectation values given by

é
/1089, and ¥, = 25F(')

6 /184,047 .

/‘225 ’ F

X
) o < o i
=2 5 fo rzkIT [Rop(ry )Ry (5)]% aryar, (106
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/7 RZ (r) dr = 1
0o "ng't! A !

r< ri
— = — jf r <y, and
r> Y i 3j
j
r
= 3 ifr, >r .
r, i 3

The confusion created by the two sets of F's does not end at this point;
there is still one further set of parameters, E°, called the Racah
parameters, which are used to erpress the matrix elements of equation
{104). The relation of X to Flk and Fp is given in a number of places

{(for example, Judd, 1963: 206).

3.2.2 Spin—-Orbit Interaction

The second interaction of reasonable magnitude in the free
ion is the spin-orbit coupling, which is

N
H, = ) g(ri)Ei.si ' (107)
i=1
where
(e ) - 02 1 au(r, ) .
i 22r dr
2m ¢ i

This interaction was derived from relativity theory in the Bohr orbit
quantum mechanics, but is a natural consequence ﬁf‘a nonrelativistic
approximation to the Dirac equation. Values of F'"’ and g (where [ =
<4f| E(xr)|4f») from Hartree-Fock wave functions are given in tables 2 and
3. In the rare-earth series, the interaction, H2, is quite strong and
is in general much larger than the interaction of the rare-earth
electrons with the crystal fields.

Consequently, it is convenient to perform all the calcu~
lations in a set of basis functions in which H; and H, are diagonal.
The set of functions that achieves this is the total anqular momentum
function IJMJ>, where the total angular momentum operator =L + S.
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TABLE 2. RELATIVISTIC HARTREE-FOCK INTEGRALS FOR TRIPLY
IONIZED RARE-EARTH IONS? (all in em™))

N R P M od z M M2 Md

1 Ce - - - 696.41 - - -

2 Pr 98723 61937 44564 820.22 1.991 1.110 0.752
3 Nd 102720 64462 46386 950,51 2.237 1.248 0.846
4 Pm 106520 66856 48111 1091.46 2.492 1,391 0.943
5 Sm 110157 691423 49758 1243.60 20756 1.540 1.044
6 Eu 113663 71373 51342 1407.71 3.031 1,694 1.149
] Gd 117058 73470 52873 1584.45 3.318 1.855 1,238
8 Th 120366 75541 54361 1774.46 3.615 2.022 1.372
9 Dy 123592 77558 55810 1998.44 3.924 2.195 1.490
10 Ho 126751 79530 57227 2197,.06 4.246 2.376 1.612
1" Er 129850 81462 58615 2431,00 4.580 2.563 1.739
12 Tm 132897 83361 59978 2680.,97 4,928 2.758 1.872
13 b - - - 2947.69 - - -

2R. D. Cowan and D. C. Griffin, 1976, J. Opt. Soc. Am. 66, 1010.

TABLE 3. NONRELATIVISTIC HARTREE-FOCK INTEGRALS FOR TRIPLY IONIZED
RARE-EARTH IONS? (all in cm™')

N R g2 pd 6 . 10 u2 ud

1 Ce - - - 778.14 - - -

2 Pr 105120 66213 47718 919.16 2.2610 1.2669 0.8601
3 Nd 109731 69165 49860 1069.87 2,5478 1.4294 0.9709
4 Pm 113640 71641 51647 1228.24 2.8261 1.5865 1.0779
5 Sm 117222 73893 53269 1397.79 3.1079 1.7453 1.1859
6 Eu 120885 76204 54937 1583.54 3.4093 1.9153 1.3016
7 Gd 124644 78585 56655 1786.68 3.7320 2.0976 1.4258
8 Tb 127137 80091 57722 1990. 51 4.0130 2.2544 1.5320
9 Dy 129960 81829 58962 2214.87 4.3231 2.4281 1.6500
10 Ho 132929 83670 60281 2458.58 4.6552 2.6144 1.7766
11 Er 135859 85486 61580 2719.76 5.0004 2,8081 1.,9081
12 Tm 138754 87276 62864 2999.22 5.3590 3.0092 2.0448
13 Yb - - - 3299.82 - - -

2s, Fraga, K. M. S. Saxena, and J. Karwowski, 1976, Physical Sciences
Data 5, Handbook of Atomic Data (Elsevier, New York).
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The spin-orbit interaction H, given in equation (107) com~
mutes with the total angular momentum and, consequently, since H, also
commutes ngh 32, the wave functions can be characterized by the eigen~
values of J2 and Ty That is, we can write y__ or [JM> for the wave

JM
functions with

J21aM> = J(T + 1) |IM> (108)
and
leam = MjIM> .

For any term of given L and S (eigenvalues of ﬁZ and gz), the values of
J ave restricted to

L - sl T < IL+s| .

Then the wave functions are customarily written ¢JMLS or |JMLS>, and we
have

L;‘;I.mz.s> = L{(L + 1)}IMLS> ,
32|JMLS> = §(8 + 1)|aMLs> ,
JEIIMLS> = J(J + 1)|aMLs> |,
JZIJMLS> = M{ogMLS> , (109}
and
1 v 1] L}
<I'M'L'S IH1 + HZIJMLS> « 8y 8y (110)

As implied in equation (110), the energy H, and H, is independent of M,
or each J level of the free ion is 2J+1-fold degenerate. The matrix
elements in equation (110) do not vanish generally for L' = L £ 1 and S'
= S £ 1; thus, L and S8 are pot strictly good quantum numbers. Neverthe-
less, the enerqgy levels are }abeled as though they were, as in the
Russell-Saunders notation, 25+ Ly. An exapple of the energy levels for
the 4f2 configuration of the free ion (Pr +) is given in table 4. Also
included is the same ion, Pr +, in the host materials lanthanum tri-

chloride (LaCl3) and lanthanum trifluoride (LaF3).

The results in table 4 are interesting in that they show that
most of the energy levels observed in the free ion are lowered when the
ion is embedded in a solid. This shift j}f‘.,. the energy levels is a
general effect and is not restricted to Pr”", but exists in all the
rare-earth ions where a comparison with energy levels of the free ion
can be made. In fact, this shift has been observed by Low (1958a,b) in
ione with an unfilled 4 shell. The first explanation of this shift in
energies was by Morrison et al (1967), where it was shown that if the
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ion under investigation 'was assumed to be embedded in a solid of homo-
geneous dielectric constant, €, then a decrease in the Slater inteqrals
is given by

{2 Verk(er 1}, (111)

s o _e?(e-1) (ke 1) (<2®5)%/
where b is the radius of a fictitious cavity surrounding the rare-earth
ion. The result given in equation (111) was first successfully appl%e?
to cott in MgA1204. Later, Newman (1973) showed that the shift in F k
given in equation (111) was sufficiently large to predict the shifts in
the energy levels for rare-earth ions. More recently, Morrison (1980)
derived the result

o,Z e2
(k) _ i1 k12
AP = { kT (¢r™)°, (112)
i R,
i
where a, is the polarizability of the Zy ligands at Ry and <r¥> is the

radial expectation value of r .« The result given in equation (112) is
believed to be more fundamental than that of equation (111) because the
latter explicitly accounts for the local coordination of the rare-earth
ion. Morrison (1980) gives a predicted shift in the spin~orbit param-
eter, [, but because of the smallness of the predicted shift and the
errors in the fitting of the experimental data, no comparisons were

made.

TABLE 4. FREE ION ENERGY LEVELS OF TRIPLY IONIZED PRASEODYMIUM
AND CORRESPONDING CENTROIDS IN TWO CRYSTALS? (all in cm-1)

[LS]J Free LaCl, LaF,
34 0 0 0
:Hg 2152 2119 2163
e 4389 4307 4287
3 4997 4848 5015
353 6415 6248 6368
¥ 6855 6684 6831
154 9921 9704 9801
302 17334 16640 16847
2* 21390 20385 20727
® 22007 21987 21314
Jl6 22212 21327 -
P2 23160 22142 22546
Sg 50090 48710 46786

4G. H. Dieke, 1968, Srectra and Energy Levels of Rare Earth
Yons 1n Crystals (Interscience, New York), pe 200.
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Because of the lack of experimental data on the free-ion
spectra of rare-earth ions, wmeasuyrement of the shift jn the Slater
integrals is possible only for Px *. The experimental F k) tor triply
ionized rare earths in LaF, and LaCl, have been obtained by Carnall et
al (1978), and these results are given in tables 5 and 6. These data
can be used in conjunction with equation (112) to obtain results that
can perhaps be applied to an arbitrary host material to predict a priori
the energy level shift of that host.

TABLE 5. FREE-ION PARAMETERS FOR TRIPLY IONIZED RARE-EARTH IONS
IN LaCla OBTAINED FROM FITTING EXPERIMENTAL DATA? (all in cm")

Ton? F2 ré F® Q B Y [

Pr 68368 50008 32743 22.9 ~674 (1520) 744

Nd 71866 52132 35473 22.1 =650 1586 880

Pm 75808 54348 38824 21.0 ~€45 1425 1022
Sm 78125 56809 40091 21.6 -724 (1700; 1168
Eu 84399 60343 41600 16.8 (-640) (1750) 1331
G4 85200 60399 44847 (19) (-643) 1644 (1513)
Tb 90012 64327 42951 17.5 (-630) (1880) 1707
Dy 92750 65699 45549 17.2 ~622 1881 1920
Ho 95466 67238 46724 17.2 -621 2092 2137
Er 98203 69€47 49087 15.9 -632 (2037) 2370

4w, T. Carnall, H. Crosswhite, and H. M. Crosswhite, 1978, Argonne
National Laboratory, ANL-78-XX=95.
Values Iin parentheses were not varied in the fitting.

TABLE 6. FREE~ION PARAMETERS FOR TRIPLY IONIZED RARE~EARTH IONS IN
LaF, OBTAINED FROM FITTING EXPERIMENTAL DATAZ (all in cm")

Ionb F2 Fé Fo Q 8 Y [4
Pr 69305 50675 32813 (21) ~842 1625 750.8
Nd 73036 52624 35793 21.28 -583 1443 884.9
Pm (77000) (55000) (37500) (21.00) (~560) (1400) (1022.)
Sm 79914 57256 40424 20.07 ~563 1436 1177.2
Eu (84000) (60000) (42500) (20.0) (=570) (1450) (1327)
Gd 85587 61361 45055 (20.0) (~590) (1450) 1503.5
Tb 91220 65798 43661 19.81 (-~600) (1400) 1702
Dy 94877 67470 45745 17.64 ~608 1498 1912
Ho 97025 68885 47744 18.98 =579 i570 2144
Er 100274 70555 49900 17.88 ~599 1719 2381
T 102459 72424 51380 (17.0) ~737 (1700) 2640

4y, T. Carnall, H. Crosswhite, and H. M. Crosswhite, 1978, Argonne
National Laboratory, ANL=78-XX=-95.
values in parentheses were not varied in the fitting.
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3.2.3 Interconfigurational Interaction

An interaction that has been fregquently used in fitting the
"free" ion levels of rare~earth ions in a crystal is the so-called
. interconfigurational mixing or the Trees interaction. This interaction
has been parametrized by Wybourne and Rajnak (Wybourne, 1965S) and is

Hyo = oL(L+1) + 86(G,) + v6(R,) (113)

where a, B, and y are parameters adjusted to fit the experimental data.
The operator G(G,) is the Casimir operator for the group G,, and G(Gy)
is the similar operator for R; (note that {2 = L(L+1) is the Casimir's
operator for the group R3). The values for these operators for all the
states are tabulated by Wybourne (1965: 73). The values for the state
of f2 are given in table 7. The values of o, B, and y obtained by
fitting experimental data for the rare-earth ions are given in tables §
and 6. To my knowledge, no successful attempts to derive theoretical
values of o, 8, and y have been published.

3.2.4 Other Interactions TABLE 7. EIGENVALUES OF
CASIMIR'S OPERATORS FOR
STATES OF £2

Many other interactions
are considered in the free ion, such
as spin-other-orbit, orbit-~orbit, State a 12b Sy
and configuration interaction. All

of these to a greater or lesser 3% 2 12 5

extent improve the fit of theoret- 3

ical =nergy levels to the experi- F 12 6 3

mental data. We will omit these 3y 120 12 5 ;
interactions from further discussion :

since H,, Hy and H,, give a s 0 0 0 '
sufficient representation of the ]

free ion for our purposes here. D 6 4 7

However, we shall 1list a number of 15 20 14 2

interactions including the above

which have been considered by 1 42 14 7

various research workers (Wortman et
al, 1973a,b):

H, = the nuclear quadrupole

Hy = the Coulomb interaction interaction
Hy = the spin-orbit interaction Hg = the spin-other=-orbit .
Hy = the crystal-field interaction interaction
Hy = the interaction with a magnetic Hg = the orbit-orbit interaction
field (Zeeman effect) Hyo = the interconfigurational

Hg = the hyperfine interaction interaction
Hg = the spin-spin interaction Hy, = the spin-crystal-field

interaction
The notation listed above is that of Judd (1963), with a few obvious
addicions.
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3.3 Summary

We have congidered the Coulomb interaction, H,, and the spin-
orbit interaction, H,, for the configuration 4EN in the free ion. The
wave functions that are chosen as a basis for diagonalization of these
interactions is |JMLS>, and the resulting energy levels are labeled
according to the Russell-Saunders notation as given in section 3.1.
This same notation (plus additional guantum numbers) will be used for
describing an ion in a crystal. The values of <r > that are needed in
equations (111) and (112) are given in table 8. The wave functions used
for the calculation of the energy levels of a rare-earth ion in a solid
will be the combination that simultaneously diagonalizes H, and H,.

TABLE 8, NONRELATIVISTIC HARTREE-FOCK EXPECTATION
VALUES OF <r°'>, NUCLEAR SPIN, AND MAGNETIC MOMENTS OF TRIPLY
IONIZED RARE-EARTH IONS? (atomic units)

N R <r?> <rd> <r®> a3 1 .

1 ce 1.1722 3.0818 15.549 4.88571 772 0.9

2 Pr 1.0632 2,5217 11.492 5452708 5/2 4.3

3 N4 0.97822 2.1317 8.9525 6.17823 7/2 ~1.08
4 Pm 0.91401 1.8701 7.4224 6.82779 7/2 2.7

5 sm 0.86059 1.6700 6.3365 7.49427 7/2 -0.67
6 Eu 0.81064 1.4898 5.3886 8.20108 5/2 3.464
7 G4 0.76368 1. 3267 4.5589 8.95054 3/2 ~0.,254
8 Tb 0.73523 1.2508 4.2673 9,66059 3/2 1.99
9 Dpy 0.70484 1. 1644 3.9002 10.42528 S/2 ~0.46
10 Ho 0.67481 1.0788 3.5296 11.23504 7/2 4.12
11 Er 0.64714 1.0028 3.2111 12.07835 7/2 -0.564
12 Tm 0.62154 N.93514 2.9355 12,95607 2 0.047
13 b 0.59678 0.87030 2.6713 13.87743 5/2 -0.6776

45, Fraga, K. M. S. Saxena, and J. Karwowski, 1976, Physical Sciences
Data 5, Handbook of Atomic Data (Elsevier, New York).

4. CRYSTAL-FIELD INTERACTIONS

4.1 Phenomenological Theory of Crystal Fields

In the presence of a crystal field& we take the interaction of
the rare-earth ion whose configuration is 4f as

N
Hy = ] B;q 121 Crqlrs) (114)
kq
37
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where the qu are unnprmalized spherical harmonics given by

Crq(r? =\f§%§? Yyglr)

The use of Ckq in place of Yiq Seems trivial, but it saves writing a
tremendous number of factors og 41 and 2k+1 in the interactions. The
use of the Cx in expressions for electronic interactions (along with
other shorthang notation that we will not use) is practically universal,
The number of terms in equation (114) that needs to be considered is
limited by the symmetry of the site occupied ﬁ; the rare-earth ion.
Also, since we will be discussing only the 4f" configuration, k 1is
limited to values of 6 or less. This limitation arises because, inde-
pendent of the basis chosen, individual matrix elements of C 9 will have
to be considered, and these are such that <f!ckq|f> =0 if k > 2f = 6.

The highest possible symmetry that an ion can experience in a

crystal is full cubic (for example, CszNaanl6, where Ln = any rare-
earth ion); in that case, two B q are necessary, 840 and BGO' since B44
= (5/Y70)B and Bgg = = Y(7/2)B and Brg = 0 for k odd. Because of

the simplicity of the calculations, the ion is often assumed to occupy a
point of cubic symmetry with perturbations. In general, this assumption
is not very productive. On the other hand, in many solids the rare-
earth ions occupy a site with no symmetry (such as LnPg04,, where Ln = a
rare-earth ion; these are the pentaphosphates, one of the best known
laser host materiﬁls for N4d). In this case, all the qu are allowed,
which for the 4f configuration are 820' 321, 522, B40, 841, v e s
Bgg e Since each B gr # 0, is complex, there are 27 parameters.
Unfortunately, the tec%nical importance of the rare earths in these low-
symmetry solids complicates the problem of calculating energy levels for
practical application. At present, we assume that the ion is in a
slightly more symmetric position in the pentaphosphates for simplicity
in the calculation (Morrison, Wortman, Xarayianis, 1977) but have no
idea how good these approximations are.

We have been assuming in equation (114) that the Byq ave the
same for each electron, which is a universal agssumption made when deal-
ing with rare-earth ions. We will continue with this assumption here.
The By are referred to as the crystal-field parameters and, as the name
implies, are used as parameters when fitting the experimental data.

In the early days of the experimental investigations of rare-
earth ions in sclids, relatively few materials could be grown as single
crystals with a small amount of rare earth contained substitutionally.
An exception was lanthanum trichloride (LaCl3), which was the crystal
used by the Johns Hopkins Laboratory under the direction of Gerhardt
Dieke, who in the sgpan of 10 to 15 years, along with his graduate stu-
dents, had reported the absorption and emission gpectra of nearly every
rare-earth ion. In one of Dieke's publications (Dieke and Crosswhite,
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1963), he gave an energy level diagram of the results of this research.
This dilagram became so popular that it is generally referred to as a
"Dieke chart” and is found in practically every laboratory where the
spectra of rare-earth ions are being investigated or rare-earth ion
lasers are being designed. These Dieke charts are invaluable for the
investigation of a new crystalline material (commonly referred to as a
"host") that has been grown to contain a low atomic percentage of a
particular rare-earth ion. A common method for referring to a substi-
tutional doping is Y3(1-X)Nd3xA15012, for x x 100 percent neodymium-
doped yttrium aluminam garnet. When a solid contains a rare-earth ion
as one of 1its constituents, such as the excellent laser material
NdP;04,, it is referred to as a stoichiometric laser material. A pri-
mary requirement of a host material, besides being transparent in the
region of interest, is that cne of the atomic constituents be trivalent
and have nearly the same ionic radius as the ion in the rare-earth
series. Also, the so0lid shovld have no absorption bands in the region
of interest. The most common ion meeting these requirements is yttrium,
and most of the rare~earth doped laser crystals have this element as a
constitutent, although several of the rare-earth ions themselves meet
these requirements, such as La +, Lu3+, and for particular purposes
gadolinium G4 +,

4.1.1 Matrix FElements of H3 in J States

In order to make full use of takul:ted d4ata in our calcula-
tions, it is necessary to make some modifications in equation (114).
Neilson and Koster (1964) have calculated the reduced matrix elements of
the unit spherical tensors introduced by Racah. The qu(i) can be
written in terms of thozse tensors as

Cpqli) = V221 <£HCkN£>u§(i) (115)
and
. — K
] Cqli) = vEEFT <ancyinuls) (116)
1
where

<l 1e> = <R(0)k(0)|R(0)>
Thus equation (114) may be written

= + (k)
Hy = kg qu/iE¥T <RI, A>T, . (117)
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The reducad matrix elements tabulated by Neilson and Koster
are for L-$S states, so we must relate the matrix elements in the J hasis
to L-S basis. To do this we construct the state

|IMLS> = § <L(u)S(M=p) [TJ(M)>|LysM=-p> . (118)
" .
Then

(k)HJLS> et (119)

(J'M'L'S'luék)lJMLS> = <T(M)K(g)| I (M")><T'L'S' IV
by application of the Wigner-Echart thenrem. If now we calculate the
matrix element in equation (119) by using the wavefunctions of dquation
(118), we have

<J'M'L'S'|U;k)IJMLS>

= ] <L(p)S(M-p) |IJ(M)CL' (p')S' (M -p" ) [J'(M*)>
up! (120)

IU(k)
q

x <L'y's*'M¢-y’ jLusM-p> .

The matrix elements,

<L'u’S'M'-u’IU;k)ILuSM-u>

{k)

=§, .8 *u<L(u)k(q)IL'(u')><L'S'HU s> |, {121)

Ss' M'-p' M

afe obtained using the Wigner-Echart theorem, with the knowledge that
u k) is a spherical tensor in orbital space only. In equation (120) the
last C-G coefficient and the C~-G in equation (121) can be rearranged to
give

<SL{Wk(q) IL' (u')><L* (u")S(M=p) |T'(M')>

L+k~L* (122)

= (=1) <R(QL(P) L' (p')><L (n')S(M-u) [T (M*)>
where we have used the results S8' = S and M' -« u' = M - y given in
equation (121). The two C~G coefficients given in equation (122) can be

written
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L+k-L"

(=1) <KR(QIL(u) ILP (u" 3><L (U )S(M=pu) ]I (M')>
.
-y, ! ;
= (=K Y IZLTRTITZEA 1) WIKLI'S1L'€)<L(u) S(M-y) | £(M)> (123) {
f !

x <k(g)E(M) 1T (M')> .

Since all the dependance on u i3 contained in the first C-G in equation
(120) (the only one remaining) and the first of equation (123), this sum
can be performed to give

Y CL(u)S(M=p) |T(M)><L(W)S(M=-p) {E(1)> = 8¢ (124)
Y]

from the orthogonality of the C-G coefficients. Substituting these
results back into equation (120) we have

<J'M'L'S'|Uék)IJMLS> = (-1)IHRL' AFTVITIT237T) W(kLI*S:L'J)
x <k(q)I(M) 10 (n')><n'stu®) pnsrsgg, . (125)

We have used the condition £ = J in equation (124) and the result in
equation (121). To compare the result in equation (125) with equation
{118), we need to rearrange the C~G in equation (125):

st ® rgnsy = (-1 L I AIETET (25717 W(KLI'S;L'd)
vern(k) ay e (126)
x <u's1u®) 1Le>

The matrix elements tabulated by Neilson and Koster (i1964) are related
to ours by

(L'SIU(k)HLS> = v3T7FT <u'suuK) s> (127)

Finally the complete matrix elements of Hy given in equation (117) are

<J'M'L'S|H3IJMLS>

gy = + ' '
! kg qu<J(M)k(q)|J (M")> V2i+71 <CRIC N2>

x <3'L'siu XV ygLs>

(128) 3
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'L st ®) yanss . = (=)L M-I 5TET w(kLIts L) (129)
x (L'siuf®)ng)

and

<gle 12> = <2{0)k(0)|R(0)> .

For L = 3, <RIC I4> = -2/¥75, 2/Y22, and -10/¥429 for k = 2, &, and 6,
respectively.

4.1.2 Numerical Example: 4FJ States of Nd3+

As a numerical example of the calculation of_ the crystal-
field splitting, we will caliculate the splitting for Na3t (4f3) in a
field of S4 point symmetry. We shall assume that the levels are pure
l'F‘J. We assume that L, S, and J are all good quantum numbers; then we

consider matrix elements of Hy in equation (128) with J' = J and L' =
L. Thus,

<IM'LS|H,|IMLS> = y a§q<J(M)k(q)|(M')>
kq (130)

x <TIUKNT> VIIFT <2(0)k(0)|2(0)>

The values of the reduced matrix elaments <JIUXIT> Y2I+1<21C, IR> for the
Y state of NA3* are as in table 9. 1In obtaining these values we have
used Neilsow(and Koster's results (1964) for the reduced matrix ele-
ments, (LSHIUTKELS), for L, = 3 and S = 3/2; the Racah coefficients (6
symbols) are found in Rotenberg et al {1969).

TABLE 9. VALUES OF <J1uXia>/ZTFicaic, 12>

J k = 2 k = 4 k=96

% § [%}1/2 o .

3 1 (=) o 0

: 3 %) 2l ekl - 4 bl

3 5 Y sl Y R s
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The calculation of the energy levels is made somewnat simpler
by using wave functions that transforim according to some irreducible
repriasentation of the S, group (Koster et al, 1963). The irreducible
representaticns of the S, group are all one-dimensicnal, hut, since the
lon under investigatior has an odd number of electrons, the energy
levels will be at least doubly degenevate. Thus, of the four irreduc-
ible representations-~F5, F6, P7, and PB——only' twe need be chosen; we
chose I'¢ and I';.  The energy corresponding to FG is degenerate with P5
and that corresponding to g is degenerate with T'y. The wave functions
belonging to I' with a particular J value are

g 85>, - 4 cx o 2

and those for FS are

8k~3 _ 2J-3 2J+3
g =55=> g < k < =5 '

where k is an integer, and the number of k values occurring for a given
J is the number of times a representation will occur. The number of qu
for the calcium site in calcium tungstate is five: i.e., Bygr 840, BGO'
Bygr and Bgge Of these parameters only the Bga is complex. The matrix
elements of the crystal field given in the above equation are presented
explicitly under particular states in the following paragraphs.

A

3/2

‘ This level of the free ion is split into two doublets by the
crystalline field. The wave functions corresponding to I', and to F5

are I% % > and |3 -~ % > respectively. From equation (130) we have
31 s - = 3
<33 1531 43> %5 B0 = B(17 3) (131)
and
3 _3 3_ 3, _2 _ 3
<3-3 81 35~5>=58,, =5(I,3) . (132)

where the appropriate values of the reduced matrix elements in equations
(131) and (132) were taken from table 9., The total splitting of the
“F3/2 state is then

4

55 B20 . (133)

43
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Unlike the previ case, this state contains two ['.'s, and
their wave functions are I%-% > and | -5 > The wave function for
the T, state is | 7 >« The energy for T, is

-

lo,] 33> =530 [-a8, + 338, | =5(r, 2) . (134)

0 20 33 40

A
N
[ ) S
[XTIE ]

51

o

The necessary matrix elements for the energy in P5 are

55 55, _ 11 25 - )
<33 M0 33> =555 [5By + 55 Byol = 2yq (135)
5 3 5 3 11 25 _
<3 =30 5 -5 > =555 ["By = 37 Baol = By (136)
5 3 55 1
<~..—|HI--—>=-—-_B = b . (137)
272 "3l 22 o/1d 44 12
The two energy levels corresponding to Ig are
beg + by, + [(byy - byy)2 + 4b, by, ]1/2
B, (rg 3) = 2117 P22 11~ %22 12012 (138)
by, + by, = [(byq = b,,)2 + 4b,,b¥,]1/2 :
By (rg §) = —H1 722 11~ P22 12212 . (139) \
4
F1/2
This state contains two r5's and two F7's . The matrix

elements for P7 are

-—

7 71 . -
<33l 335> =5 B0 * 72 Ba0 * 13 Beo) * 211

7 7 7 7 1 1 10 ~
<z -zl g -5 =55 (118, + 3B, - 33 8] =a,,

7 7 71 1 30
<z-3IHl332>=5 7 Bag = 73 V10 Bgy [= 24,

2
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The two energy levels are

+ + - 2 4+ 4 1/2

£,(r, 1) - a1 * a5, + [(249 ;22) 21281, (143)
/

5,(r, ) = 21 * agy - [(agg . agy)? * dagappji’? (144)

The matrix elements for F5 are¥

75 75 1 11 13 50
— —— TR — ——— - —— o emnm— =
<33 M0 533> =55 [5 8,0 - 72 B0 * 73 Beol = Py (145)
7 3 7 3 1+ 33 3 920 ~
<3-7 0 3-5> =55 [~ 58,5 7380 ~ 73 Beol = Ppp ¢ (146
7 3 75 1 | fis 20 |21 _
<338l 332 =5 [\114 B * T3V 3 B64] =bg, - (147)

The corresponding energies are given by substituting the above values of
bij into equations (138) and (139).

a
Y7

The number of Iy's in this state is three, with two TIg’'s.
The matrix elements of the crystal field for F7 are

<33 181 33> = 3kg [68 - 1§ 850 + 3% 550] =21y - (148)
<33 iu3l 33> = gdg (a3 - Wmy - B mgo] 2y, ¢ (149
<3-F 1m0 3 -3 = gfy (28 + B my - WY gy] = ay; (150)
<33 1m1 33> =g [-§ /5, + 18} By =2y, (151)
<3-F1m50 3> =gl [- 1§ /Bmyy + 3 B) =2y (152)

" #The symbol a;; will be used for the matrix elements in T, and bj
for those in P5 tg avoid introducing new symbols for each new value og
Je
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The three energies are given by the solutions of

3 _ 2 . - -
E (agqtagatay3)E2 + (agqayytagqagytagyazgmagqalz=a ,ay, e

+ ajqaj3aly + azjaaf; - a3 =0 (e

The matrix elements for PS are
< % % H, | % % > = 3%3 [By0 l;‘B4o * lg% Bogl = byy (154)
< % - % b, % - % > = S%E [-38,4 - % Bso * é% Beol = byy (153)
< % - % 4,1 % % > = 3%3 - % /30 By, - ﬁ% 76 Bgyl = by, - (156)

The energies E1(F5 %) and EZ(FS %) are given by equations (138) and
(139), respectively, using the bij given above.

Calculation
Three of the crystal-field parameters can be obtained quite
simply from the erperimental data. These are B o¢ Baor and Bege If we

express the sums, Si' in terms of the Ei where the Ei are experimental
data, then we obtain

Sga172 = L By (T99)
i

and
S, =--—=138 (157)
1 25 20 '
11 1
Sy =395 Bao * 22 Bao (158)
2 8 40
S3 = %3 Ba0 Y %93 Ba0 * 7287 B0 ¢ (159)
S = U 40 (160)

4 "9 5820 " 708 Beo " 7287 Pe0
where S, is for the J = 9/2 level. These equations can be inverted to
give
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840 = -33S1 + 4282 ’ (162)

1001 78 1287
Bso ™ 20 51~ 5 52 %20 53 (163)

The other crystal-field parameters are slightly more in-
volved. From equations (138) and (%39) we have

Byq = 34 [W§ - n2)1/z (164)
where
= - = 2) - 2
Ny==-1ls, +2s, ana wy = E,(Fg 3) - Ey(Tg 2) .

To determine Bgy4s we use equations (143) and (144) to give

=1 w2 - N2
aj,afy =3 [W2 Nz] (165)
where
7. .2, ,3 _ 7y 7
Ny =281~ 38, %38y and w, =E(1, 3) - E(1;3) -

A similar expression can be obtained using equations (145)
and (146) in equations (138) and (139), yielding

=1 w2 - N2
byb%, = 7 [W5 - N3] (166)
where
13 7 7 7
Ny =% 8, -25, +58, and W, =E|(T,3) - E(Ig3) -

Substituting equations (142) and (143) into the left side of
equations (165) and (166), we obtain two equations for Bgu. These two
equations can be solved simultaneously for both real and imaginary parts
of Bg, to give

Rg = 28 [322 (W5 + wd - vZ - n3) - e(w} - n2)]V/2 (167)
15499 (2 L w2) o 2 - N2) .. 21089 (2 . N2
cos 8 o138 (W] - n2) - a(w? - %) 5 (W2 - n3) O 1es)
70 2 _ w211
20v70 Rs(w1 N1] /2
where
ie
364 = Rse .
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All the crystal-field parameters can be determined once the
experimantal data are taken on the l‘}?‘3/2, “FS/Z' and “F7/2 levels.

As tedious as the above procedures may have seemed, the
crystal-field parameters we obtain are only approximate since we have
ignored L~S mixing by the spin-orbit coupling in the free ion and J
mixing caused by the crystal field. Nevertheless, the crystal-field
parameters obtained by the above procedure can serve as very good start-
ing values in a fitting of a more sophisticated calculation to experi-
mental crystal-field levels.

The crystal-field parameters B, , obtained by the above proce-
dure for Na3* in Cawo, are given below, along with crystal-field param-
eters for the same ion but with full diagonalization, that is, L-S
mixing and J mixing (Wortman et al, 1977).

Bry Byo Bgo Bag Beo RBgq IBgy

above 403 =635 +711 =219 885 0

full diagon~ 509 =866 1042 =508 903 243
alization

4.2 Classical Point-Charge Mcdel

In the simplest model of the crystal field, the point-charge
model introduced by Bethe (1929), the lattice is replaced by an array of
point charges placed at the nuclei of the constituent ions. A multipole
expansion is made of the point-charge potential energy at the rare-earth
site. Thus, if R (j) is the vector position of constituent j at site
j in the £, m, nth cell, we have

2
-e“Z
3
n3=n‘2‘2|§ oTn (169)
n j gmn 3 r
where
+ + > +> +
= + +
Rzmn 2a + mb ne pj

and :, ﬁ, and 3 are lattice vectors. The charge at site j is eZ4 and ;
is the position of an electron on a rare-earth ion. The multipolar
expansion of equation (169) is
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The multipnlar crystal-field components Akq are

2 Chq [Romn (D) ]
K+

Beg = -2 ) 1 (171)

siin [len(j)]
Thus the point-charge Hamiltonian is

N
Hy = [ A;q ) rickq(ri) ' (172)
kg i=1

where we have summed over all the N electrons in the 4fN configuration.
If all the lengths are measured in A (10”8 cm), then

. . zjckq[nmnm]

Ag = " 5% x 10° § ¥ =7 (173)
fmn [Rzmn(j)]

where a, = eZ/fic (a_ /2v x 108 = 116,1%?)-~that is, the fine-structure
constant--and the units of Akq = cm 1/8%. If <r®> is in A units, then
Akq<r > = et

The sum in equation (173) always converges--even for the lowest
k value (k = 0)--if taken in the order indicated. That is, the sum over
j is performed with £, m, and n fixed., The unit cell is neutral, that
is,

2,=0 . (174)
2

In many cases (not all space groups) it is possible to choose an origin
for the lattice ccordinates such thrat the dipole moment of the unit cell
vanishes; that is,

>
g PyZy =0 (175)

where B is the position of the jth charge in the unit cell. The result
in equagion (175) can be anticipated by observing the point symmetry of
the: ions in a specific solid. 1If the ions occupy Cqr Cqr Cgy Chyr C4
c4v, C3, c3v, CG’ or C6v point symmetry (S8choenflies notation), then it
is impossible to satisfy equation (175) with theae sites as the origin
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ir a unit cell. If it is possible to satisfy equation (175). then the
sum given in equation (173) converges very rapidly. This can be shown
from the expansion (Carlson ard Rushbrooke, 1950)

o~ ~
¢, (R=-x) N1/2 "o CE (R)
|R=-x ! @ R (176)
with 3, = X and R, (0) = R (iimn(j) = ﬁzmm) + Sj), for the sum in

equatidén (173) we have

A

z.c, [R, (3)] 1/2
- k 2a+2k ,
D 2mnk+1 = ) 7 ( :a ) a(a)k(q)ia+k(a+q)>
fmn J [Rzmn(J)] fmn a (177)
*
a " Ca+k,a+q[R2mn(0)]
"ZZ.:”-C (p) *
AR PR TR
] ¢mn J
Now if equation (175) is satisfied, then
) z.p.C, (p.)=0. (178)
5 373 Ta"j
Thus, the sum in equation (177) is for a > 1; we see that even for the
lowest term. k = 0, we have the individual terms falling off as

1/R%mn(0). While the expansions in equations (176) and (177) are gcod
for demonstrating the rate of convergence, the computation of A, by
equation (173) is more practical. However, in equation (173), the sum
over j should be done for each cell first, with fixed values of &, m,
and n. In programming language, this is expressed by stating that the j
loop is the innermost of the nested £, m, n, and j loops. In some
lattices, the condition in equation (175) may place some of the point
charges on the cell faces. In these cases it is a simple matter to
balance these charges by an adjustment to fractions of equal charges on
opposite faces.

The convention we use for our lattice sums is that given in the
International Tables for Crystallography (1952); table 10 is reproduced
from volume I (the other two volumes give data strictly for x-ray crys-
tallographers). The data used in the lattice suwns are generally those
reported in Acta Crystallographica, Section B. Care should be taken to
make certain the correct setting is used.,

Typical data used in the calculation of the lattice sums are
given in table 11 (LiYF,, calcium tungstate space group 88, Scheelite
structure). All the data given in table 11 are given in the Interna-
tional Tables, except that the x, y, and z coordinates are determined by
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TABLE 10, CRYSTALLOGRAPHIC AXIAL AND ANGULAR RELATIONSHIPS AND
CHARACTERISTIC SYMMETRY OF CRYSTAL SYSTEMS

b
a=f=7y = 90°

Space s Axial and angular X-ray data needed
ystem : )
group relationships for nnit cell
1,2 Triclinic adb#c a, b, c, a, B8, ¥
a® By # 90°
3 to 15 Monoclinic First setting a, b, ¢, vy
a®tb#c
a=f=90° # y
Second setting a, b, ¢, B
a#b##c
a=y=90° #8
16 o 74 Orthorhombic a*b#c a, b, c
a= 8=y = 90°
75 to 142 Tetragonal a=>b#c a, ¢
= g8 = v = 90°
143 to 167 Trigonal (Rhombohedral axes) a, o
(may be taken a=bs=c
as subdivision a=f8=1v < 120° # 90°
hexagonal) a=Dpb¢#c
Q=B=90°
y = 120°
168 to 194 Hexagonal a=b#c a, ¢
u=ﬁ=90°
Yy = 120°
195 to 230 Cubic a = = C a

Source: International Tables, 1952, Vol. I, p. 11, table 2.3.1.

x=-ray diffraction. The lattice constants a, b, and ¢ are also deter~
mined by x-ray diffraction and, as customary, the true positions of the
ions are xa, yb, and zc (these relations hold for all the ions in a unit
cell). The polarizability (from Kittel, 1956: 165) of each ion is given
at the bottom of table 11. For this particular solid, only the fluorine
ions can have dipole moments that contribute to the crystal field (we
shall discuss the role of the dipole moments later on). All the data
for space group 88 are not contained in table 11 because the equivalent
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positions given in the International Tables are generated inside the

" program. The centering position in the cell can be taken as either the

Y or Li site, since these positions have S, symmetry, and their lowest
crystal-field component is Ayp+ Equation (178) is therefore automati-
cally satisfied. The resulting lattice sum for the Y site in LiYF, for
the parameters in table 11 is given in table 12,

TABLE 11. CRYSTALLOGRAPHIC DATA FOR Li‘ll’-‘4 ( SCHEELITE, Caw04)
TETRAGONAL SPACE GROUP 88 (FIRST SETTING) Z = 4

Ion Position Symmetry x Y z
Y 4b S4 0 0 1/2

Li da 54 0 0 0

F 16f C1 0.2820 0.1642 N.0815

Notes: a = 5.1668, b =a, ¢ = 10.733, a = 90°, B8 = 90°,
Yy = 90°, a = 0.55 A3, ap; = 0.05 A3, ap = 1.04 A3 (reduced
to 0.104 in the lattice sum), Zy =43, 2, ;= +1, 2, = -1,

TABLE 12, LATTICE SUMS FOR Y SITE AT (C, 0, 1/2) FOR

i = = - = 3

LlYF4 WITH ZY = 3, zLi 1, ZF = ~1, up = 0.104 A
Lattice Monopole Anm Dipole Anm Monopole and dipole
sum

Real Imaginary Real Imaginary Real imaginary
AZO 1074 0 340 0 1414 0]
Ayy 373 859 -358 74.0 15 933
A0 -1957 o] -98.1 0 -2055 0
A44 -2469 -2362 -3.83 -80.3 2473 -2442
Ago 1050 -2456 1.28 ~-74,7 1051 -2531
Ago -17.2 0 7,96 0 -9,24 0
Agy -615 -420 =-29.03 -9.37 -644 -4292
Aqy =15,7 0,90 1.55 -9,.94 ~14.2 -9.04
A76 250 -63,8 17.8 7.96 268 -55.9

The sum covers all of the complete cells in a sphere of 30~
A radius and should be an accurate result. Also included in table 12
are the results for the dipole contributions dQue to the presence of
dipoles at the fluorine sites (we shall discuss these terms later).
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As a second example, we choose a very low symmetry solid, YC1
which is monoclinic space group 12. As can be seen in table 13, all the
ions are in very low point-gsymmetry positions, and each position can
have a dipole moment (another way of saying this is that each position
has a onefold field, A1m). We then have to consult the International
Tables for a higher symmetry position in order to satisfy equation
(175), which in this case is the site 4e with C symmetry. The C point
group has only the inversion operation, and all the odd-n vanish in
this symmetry. Thus if the position 4e is used, equatlonlw175) will
automatically be satisfied. The lattice sum for YCl3 was alsce run over
a lattice 30 x 30 x 30 and only the even-n A . are given in table 14,
The dipole contributions were also calculated; these calculations were
more complicated in this solid because of the three types of sites (Y,
Cl1, Cl,). For many of the m’ the dipole contributions are much
larger than the monopole terms. This frequently happens when the hand-
book values for the dipole pclarizabilities are used. We have had more
believable results when we reduce the polarizability to one tenth of the
handbook value.

TABLE 13. CRYSTALLOGRAPHIC DATA FOR YCl,
MONOCLINIC SPACE GROUP 12 (C2/m) (SECOND
SETTING) Z = 4

Ion Pogition Symmetry x Yy z

Y 4q9 c, 0 0.166 0

Cl, 4i Cq 0.211 0 0.247
Clz 83 C1 0.229 0.179 0.760
- de C{ 1/4 1/4 0
Notes:

a = 6.92, b = 11.94, ¢ = 6.44, a = 90, 8 = 111.0,
Y = 90.

Charges: qy = 3, 9c; = -1.
Polarizability: ay = 0.55 A3, a.; = 3.66 A3.
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TABLE 14. LATTICE SUMS FOR Y SITE AT (0, 0.166, 0)

FOR YCly, EVEN-n A . ONLY, ALL A REAL |

Lattice sum Monopole Dipole Total
R0 1738 3227 4965
Ayy -913 2916 2003
LYY 245 2574 2819
Agp -73.9 246 172
L 85.8 -398 =312
Ags ~-41.3 47.7 6.4
A43 10.4 -791 -781
Agq ~3.64 516 512
Ao -0.06 -80.2 -80.3
Agq ~-3.76 21.3 17.5
Ago 3.35 -27/.4 ~-24.0
Rga -0.58 60.5 9.9
Agq 2.73 39.2 41.9
Ags 5.07 13.7 18.8
Rge 8.14 -65.9 -57.8

The lattice sums given in tables 12 and 14 are incomplete in
that the results are not in a usable form for many of our computer
programs. Before we can use these results, the Anm should be rotated
using the standard Euler angle-rotation matrix, so that the lattice
sums, AAm’ rotated from A by the angles a, B, and y are

n
A' = .
nm g, Dm'm(a'B'Y)Anm'

Explicit forms for the Dz,m(a,e,y) are given in Rose (1957, ch. IV).

4.3 Point-Charge Model Developad at HDL

4:3.1 Introduction

In the classical point-charge model, the crystal-field param-

eters, Bnm' for the crystal~field interaction of the form
= * .
Hy =] BY T c (i) (179) K
nm i .
were calculated as
n
B = <r >A R (180)
nm nm

where the <r> are the expectation values of r" of the rare-earth ion,

and the are the multipole components of the energvy at the site
occupied by thz rare-earth ion. In the earlier models, the radial
integrals used in the evaluation of r? were taken from Hartree-Fock
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calcvelations (Freeman and Watson, 1962), and the Anm were calculated
using the point charges at the valence values for the ccnstituent ions.
These calculations generally gave the twcfold ficld 10 times too largs,
the fourfold fields approximately in good agreement, and the sixfold
fields 10 times too small,

4.3.2 Screening and Wave Function Spread

Several errors in the classical theory were immediately
obvious. If the radial wave functions (Hartree-Fock) for the frece ion
were correct, then these wave functions should give the correct values
for the Slater integrals F¢, F4, and F . They did not for Pr +. A
simple procedure was then applied. The radial wave functions were
assumed to be of the form

$(r) = CRHF(Tr) ' (181)

where 1 is a parameter, C is a normalizaticn factor, and RHF(r) are the
Hartree-Fock radial wave functions. With the radial function given by
equation (181}, the Slater integrals become

k K
F =
TFHF ' (182)
and it wag found that a value of T of approximately 0.75 was needed _to
fit the that are found by fitting the experimental spectra of Pr3+.
Thus, the Hartree-Fock radial wave functions had their maxima toc near
the origin and needed to be spread out even in the free ion, and perhaps

more spreading was necessary for an ion in a solid,

From the radial wave functions given in equation (181), it is
not difficult to show that

f(r)> = < |£(x) [>/<4 9> (183)
= <f(r/'r)>HF ’

so that any quantity that has been calculated using Hartree~Fock func=-
tions is immediately obtained, particularly
k k k

<r'>» = <r >HF/1 . (184)

A second error of the classical method was the omission of

the Sternheimer shielding factors (Sternheimer, 1951, 1966; Sternheimer

et al, 1968). In 1951 Sternheimer showed that, in a multipo’ar expan-

sion of the energy of a point charge embedded in a solid, the r"™ should

be replaced by r"(1 - cng, where the ¢_ are the shielding factors. He

further showed that these factors were independent of azimuthal angle;
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that is, if the angular variation in the multipolar expansion was given
by Y__, the o, were ingependent of m. The values of on have beer calcu-
lated " for pPr3+ and ™m”’ and are

3+

g, = 0.666, o, = 0.09, o_ = 0.04 for Pr '
2 4 6
3+ (185)
0'2 = 0-545, 0'4 - 0-09, 06 = 0,04 for Tm ’
where the replacement is
n 1
r »r(1-0) . (186)

More recent calculations of the shielding factors have been done
(Sengupta and Artman, 1970, and perhaps others), which we shall need if
further refinements of the theory are undertaken,

4.3.3 Effective Chargye and Position

The crystal-field components, Rome Aare a function of tBe
position of the ions in a eolid; in solids such as Cawo, the (wo4)
complex is known to be covalent. That is, the charges on the tungsten
and the oxygen ions are not necessariiy at their valence values. If we
let the charge on the tungsten ion be qy,, then we require that

q, *+ 4q, = =2 (187)

with the charge on the oxygen being q,. The result given in equation
(187) then assumes that the Ca site is purely inni¢ with charge 2. |
This assumption is consistent with many of the experimental results on

compounds such as Cawo, or ¥VO,. We introduced a second parameter, the

effective position of the oxygen ion relative to the tuncgaten site that /
would reproduce the effective dipole moment seen from the Ca” site. '
This parameter, n, is introduced by

o w(e ffective) = nRO w(measured) p (188) .
where _y 18 the distance from the oxygen nucleus to the tungsten
nucleus. Thus there are two parameters in the » the effective

charge (ty is eliminated by eq (187)}), and n, the é%fective distance of
the oxygen site from the tungsten site. The calculated crystal-field
parameters B . then are y,

B (t1agn) = <cx™, (1 = o)A (agm)/i” (189)

with the three parameters T, g’ and n.
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The experimental data that were taken at HDL on the rare-earth
ions in CaWo, were analyzed using the effective spin-orbit Hamiltonian
(Karayianis, 1970), and a set of phenomenological Bnm was obtained,
These, given in table 15, are the Bn that the theory has to fit,.

The fitting was done by minimizing the square gquantity given by

Q=] [B(1agn) - Bppl? (190)

where Bnm(rzqon) is given by equation (189), and Bim is from table 15,
for each ion. The minimization was done with respect to T, dg. and n
for each ion. Since the q, and n are assumed to be ion independent
and T is assumed to be host independent, the average dp and n were taken
and fixed. The process was then repeated with minimization with respect
to Tt only. This process yielded the following:

9y = -1.09, n = 0.977 , (191)
and the t values were well fitted by

T = 0.767 - 0,00896N , (192)
where N is the number of f electrons in the configuration atN,  The

values of g _ used in the above were not varied in the minimizing process
but were interpolated from the values given in equation (185); that is,

0, = 09,6902 «~ 0.0121N ’
O, = 0.09 {(all w) , (193)
06 = "0-04 (all N) Y

TABLE 15. PHENOMENOLOGICAL an FOR SIX RARE~-EARTH IONS
IN Cawo, (all in cm” ')

Ton Byg Bso Bgg Bgo REg, IBg,
Nd 549 -942 005 -17 947 1
™ 468 -825 872  -290 595 160
Dy 428 -825 978 -7 448 2.5
Ho 436 -664 779 -33 558 196
Br 404 -6a5 728 12 452 164
™ 417 -683 754 17 504 339
57
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The predicted values of the Bnm(r:qo,n] for the entire rare-
earth series are given in table 16. The results giver in table 16 when
comparad to table 15 show that the difference between the derived

Bnm(ryqon] and the phenomenological Bim is greater for the low=-N ions
in the 4f¥ configuration. This may be a defect in the theory, but not
enough data on the low-N ions are available for analysis. One of the
significant results of the analysis was that it led to a reanalysis of
the spectrum of Tb:CaWO4 with a different interpretation of the experi-
mental data (Leavitt et al, 1974).

TABLE 16. DERIVED CRYSTAL-FIELD PARAMETERS, Bnm('r:qon),
FOR 45N CONFIGURATION OF TRIPLY IONIZED RARE-EARTH IONS
(all in em~')

N Ton By, By, Bga Bgo RBgq IBgy
1 Ce 441 -1429 1462 16 1251 52
2 Pr 424 -1224 1253 13 996 42
3 Nd 408 -1059 1083 11 B80S 34
4 Pm 411  -1017 1041 10 764 32
5 Smn 408 -938 960 9 676 28
6 B 408 -887 908 8 626 26
7 ed 406 -824 843 7 559 23
8 T™ 424 -856 876 8 591 25
3 Dy 428 -831 851 7 563 24

10 Ho 418 =756 774 6 488 20

11 B 415 =707 724 6 439 18

12 ™ 425  -729 746 6 454 19

13 Yb 434  -701 77 6 429 18

The values used are
02 = 0.,6902 - 000121~’ 04 = 0.09 (al.l N),
g = ~0.04 (all N), t = 0.767 - 0.,00896N,
q = -1.09’ and n= 0.977.

More recent work on CaWO4 (Morrison at al, 1977) obtains the
following values:

Oy = 0.6846 - 0.00895N,
04 = 0,023%6 + 0,00182N,
T = 0,75(1.0387 ~ 0.0129N),
Og = ~0.,04238 + 0.00014N,
dg = ~-1.150, and
n = 0.962.
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The o, values are interpolated from the calculations of Frdos and Kang
(1972) for pPr3* and ™3*. The factors in equation (189) were combined
so that

py = <r™(1 -0 )/, (195)
and the P along with the T are given in table 17. Thus we have

Ban( Tidom) = PuAnn(aom) (126)

TABLE 17. VALUES FOR T, <x™>,., o, AND o, FOR 4f"
CONFIGURATION OF TRIPLY IONIZED RARE-EARTH IONS®

Ion N € «oup <P opp b e a? o og Py Pa Pg

ce 1 0.7693 0.3360 0.2709 0.4659 0.6757 0.0254 -0.0422 0.1841 0.7536  2.3417
Pr 20,7597 0.3041 0,2213 0.3459 0.6667 0,0272 =0.0421 0.1756 0.6464  1,8754
Nd 3 0.7500 0.2803 0.1882 0.2715 0.6578 0.0290 ~0.0420 0.1706 0.5776  1.5897
Pm 4 0.7403 0.2621 0.1655 0.2247 0.6488 0,0308 -0.0418 0.1679  0.5339  1.4213
Sm 5  0.7306 0.2472 0.1488 0.1929 0.6398 0.0327 =-0,0417 0.1668 0.5049  1.3210
En 6 0.7210 0.2347 0.1353 0. 1686 0.6309 0.0345  ~0,0415 0.1666 0.4836  1.2503
Gd 7 0.7113 0.2232 0.1237 0.1477 0.6220 0.0363 ~0.0414 0.1668 0.4656 1.1873
Th 8 0.701% 0.2129 0.1131 0.1287 2.6130 0.0381 -0.0413  0.1673  0.4990  1,1232
oy 9  0.6919 0.2033 0,1037 0.1119 0.6041 0.0399  -0,0411 0.1681 0.4341  1.0614

Ho 10 0.6823 0. 1945 0.0954 0.0981 0,5951 0.0418 ~0.0410 0.1692 0.4217 1.0119
Er 11 0.6726 0.1865 0.0883 0.0874 0.5861 0.0436 -0.0408 0.1706 0.4126 0.9826
Tm 12 0.6629 N+1790 0.0820 0.0787 0.5772 0.0454 =0.0407 0.1722 0.4053 0.9649
Yb 13 0.6532 0.1717 0.0753 0.0681 0.5683 0.0472 -0,0406 0.1737 0.3938 0.9120

%phe units of <r">m‘. and o, are in AR,

At present we use the results given in table 17 to calculate crystal-
field parameters given by equation (196) and use these parameters as
starting values to¢ best fit experimental data. We generally use
Apm{g.n) withn =1 in the process (q here is the effective charge on
the ligands, not necessarily oxygen). After obtaining the best~fit Bom’
we return to the calculation of A, (q) and vary q to obtain the best fit
by minimizing the quantity

= - 2 . (197)
Q ;m[Bnm pnAnm(q)]

Following this, we obtain the Ahm(q) for odd n and use them to calculate
the intensities using the Judd-Ofelt theory.

At present we have not included the dipole contribution to the
Anm(q) but intend to do so as soon as possible. The old n in the three-
parameter theory will be replaced by a, the polarizability of the con-
stituent iong in low-symmetry sites. We believe that this latter proce-
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dure (including finding new Pn values) will give much better results
than obtained by the older theory. In our pto}ected reanalysis we will
hgxe the good phenomenological Bm for R *:laF . R3+:Lacl3, and
R” sLiYF, (these are reported by Morrison and ILeavitt, 1581), and will
soon have R3+:Y203, in addition to the B  for R3+=Cawo4 used in the
older theory. These data should be sufficient to form a very stringent
test of a newer three-parameter theory.

S. CRYSTAL-FIELD EFFECTS NOT YET FULLY INCORPORATED

5.1 Self-Consistent Point Dipole and Point Multipole

In section 4 we discussed the point-charge contribution to the
multipolar field components A e It was early recegnized by Kutchings
and Ray (1963) that the multipola:r components of the constituent ions
contribute to the A m at the s@}e occupied by the rare-earth ion. For a
point charge eZ; focated at Ri from a rare-earth site, we have the
electric potential

z
o(F) 1 ke (198)

The potential energy of the rare—earth electron at r is

u(¥) = -ed(r)

n - - (199)
r +
= -2y ] =57 Can(Fonm(Ry)
nm R}

where we have expanded the denominator of equation (198) in the spher-
ical tensors discussed in section 2, If we write equation (199) as

u) = Ya' e (n) , (200)
n% nm- “nm
then (. )
Z,C R
A(O) - -2 dinm i7 , (201)
nm i Rp+1
i

where the sum on 1 covers all the ions of charge eZ; in the solid. This
result we derived in section 4, expressed in slightly different form.
It seems natural to extend equation (200) to the form
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v = § Al (r) (202)

o
k
and relate the A(z) to the various k-pole moments of ligands at § « To
relate the Aém) £8 the multipole moments, eQ, .- we need first to express

the electric potential at the rare-earth eledtron due to the multipole
moment erq(i) at R,

The electric potential due to a multipole distribution at ﬁi is
given by

o(F) = e zq(-1)k9£é’(2k;§“)‘/2 <n(myk(q) | n+k (miq)>

nm
" (203)
c* (ry) -
+ n
X gatk+1 ' Chmlr?
i
whaere

(2k#2m) | _(2k+20)!
2n (2n)! (2k)!

(the details of the derivation of this result will be given later).
Thus, since U(E) = -ep () we find, using equation (202), that

(k Kk - 2n+2k,1/2
Anm) = -al qzi(-‘I) Ql:q(i)\ nzn ) <n(m)k(C!)|n+k(m+q)>
: (204)
Cn+k,m+q(Ri)
R;1+k+1
If we let k = 0 in equation (204), we obtain (if k = 0, q = 0)
c. (R
al0) < -2 T o5 (i) —-'-‘—'ig,—,,%-)— ' (205)
i i

wgich is identical to the result given in equation (201) if we identify

QO?(i) with % (the number of charges) given there. The result for k =
1 is

2 *  2n+2,1/2 .
= e qzi Q1q( 2n ) <n(m)1(q) |n+1(m+q)>

al
n

1)
m

- (206)
Cn+1,m+q(Ri)
n+2 ’

Ry
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; since

{ *

H ‘= - q

i Qq (-1) Q.q

<n(m) 1(q) Ine1(nq)> = (-1)1 T VEBES ¢4 (cqine1(meq) [n(m)> .

Then with these substitutions in equation (206), we have

R oy e

A“) = Z Y {n+1)(2n+3) Q(l)<1(q)n+1(m-q)ln(m)>

nm
; q'
- (207)
; cn+1,m-q(Ri)
rO+2 '
1

which is indentical to the result previously published (Morrison, 1976},
if we identify eQ, (i) —)p (1). Thus, if we knew the Q. (i), we could
easily calculate txe A( by using equation (204). Unfortunately, the
real difficulty is determinlng the Qk (1), In what follows we shall
restrict our discussion to the dipole case, k =1, and let eQ1q Py and
express the results in Cartesian vectors.

At sites of low symm:try, an electric field can exist whose
; value is determined by the various point charges of the solid. The
f electric field due to the poinu charges of the solid at a site of low
‘ symnmetry is given by

T L, (208)
) i R,
i3

and the field generated by the point dipoles is

3w, (R vBy,) B
5‘; =7 ;J L) 3i . (209)
i R
Rij i3

The dipole moment at site j is then given by

> - +0 >d
pj—aﬁj a[Ej+Ej] , (210)

where a is the polarizability of the ion at site j. (If more than one
species is considered, the polarizability of each type must be used.)
The sum in equation (208) presents no problem and can be done quite
simply. To perform the sum in equation (209), it is convenient to
assume a fixed coordinate system in the unit cell and an associated
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reference point (say position 1); then each dipole moment, P.,, can be
related to the dipole located at the reference moment, 51, by the sym-
metry operation of the crystal. Similarly, the field at each point,
ﬁj' can be related to §1. Having done this, we can write

Y = g1 8, , (211)

and from equation (210)

>

By = ofE) + a1 . (212)

The result given in equation (212) can then be solved for the dipole
moment 31 to give

B, = a(1-E (213)

where

B=(1-a® .

The result obtained in equation (213) is rather interesting; if the
polarizability, a, is near the reciprocal of one of the eigenvalues of
the G matrix, then the dipole moment becomes excessively large. This is
suggestive of the type of catastrophe that occurs in the onset of a
ferroelectric transition. Such a situation would, perhaps, be modified
by the inclusion of the higher multipole moments in the calculation. It
should be pointed out that the G matrix defined in equations (209) and
(212) is dependent only on the lattice constants and the symmetry of the
crystal. The results here were expressed in terms of Cartesian coordi-
nates but can equally well be done in spherical tensors. If higher
moments were considered the spherical tensor form is much more conven-
ient.
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TABLE 18, SPACE GROUP 88 (FIRST SETTING):
COORDINATES OF ALL IONS IN A UNIT CELL OF YL1P4 AND
DIPOLE MOMENTS OF EACH ION
$-3 Py and p, of site 1 are chosen as u,

v, and w respectively)

Site Ion x y z Py Py P, qu"

1 F X y z u v w 1

2 F y -x -z v -u -~w -nka
3 F -X -y z -u -y w (-4

4 ¥ -y x -2 ~v u W (-1)K(-1)9
S F 1/2 + x 1/2 +y /2 + z u v w 1

6 F  1/2+y 1V2~x V2-2z v -u -u (-nkH9
7 F /2 ~x 1/2=-x 1/2-2 =~u =v w (-1)4

8 F /2 ~y 1/2+y /2 +z ~v U -w (-1 %(-1)2
9 F x V2 +y 11/4 -z u v =W (-1)

10 F y /2 ~x%x 1/4+z v =-u w (~1)%
11 F -x 1/2-y 14-2z2 =u =v -~w (-1)k
12 F -y /2 +x /4 +z =v u w (14
13 F1/2 + x ¥ 3/4 - z v -w (-1)k*a
14 F 172 + y ~x 3/4+z v -u w (-4
15 ¥ 1/2 - x ~y 34 -z ~-u =v -w (~-1)k
16 F 1/2 -y x 3/4 + 2z -v u w (14
17 Li 0 0 0 - - - -

18 Li 0 1/2 1/4 - - -

19 i 1/2 1/2 1/2 - - - -

20 Li 1/2 0 3/4 - - - -

21 Y 0 0 1/2 - - - -

22 Y 1/2 0 1/4 - - - ~

23 Y 1/2 1/2 0 - - - -

24 Y 0 0 3/4 - - -

2rhe last column relates those Q)q t© tha reference point qu. Thus
the qu for fluorine are all related to gite 1.

5.2 Self-Consistent Results for Scheelite Structure

The procedure given above is rather involved, so we shall go
into the derivation of the G tensor for the Scheelite structure (Cawo4,
LiYF,, etc). The space group for Scheelite is 88 in the International
Tables; the position of all the constituents is given in table 18. To
be gpecific, LiYF4 has been chosen, and the fluorine in site 1 at x, y,
and z has been chosen as the reference point for the dipoles (u, v, w)
and all other dipoles in the unit cell are related to u, v, and w. No
dipoles can oxist at the Y or Li sites since the lowest fields at these

sites are quadrupole (k = 2).
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To evaluate G for the Scheelite structure, we shall choose the
ion at site 1 in table 18 as j in equation (209). The & in equation
{202), including the translational vectors (£ in x, m in ¥, n in 2), is

g = (f+x -x)a; + {m+y -y)aé
1,1 i x i Y (214)

+ (n+zi-z)c;x v
where we shall, during this discussion, suppress the explicit dependence
of Ron £, m, and n. We write equation (209) as

>d +d +d

E1 = F1 + I1 R (215)
where ;
#Moy i (216)
1 ; R3
1'1
and
b
2d _ > i1 Fi
I, =3 Z R 4 5 . (217)
i R;
i1

where Spms over L, m, and n are implicit. Then using table 18, we

write F1 explicitly as
d u v u v u \'4 u
P = e - - -
x 3 3 + 3 + 3 3 3 3
1,1 2,1 3,1 4,1 5,1 6,1 1 !
v u v u \'4 u v .
+ - - + + - - —_—
3 3 3 3 3 3 3
R R
8,1 9,1 Ro,1 Ru,v Rz, Rigp o Ryg,g
u v
+ = v = . (218)
R R
15,1 16,1
Then we can write s
8 i 8 i
e 70 o0 7 S0 G (219)
x {=1 R3 i=1 R3
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If we let G = G' + 3G" and restore the £, m, n sum, we have

8 i
G; = ) A= , (220)
¥ 2,m,n i=1 R3
e 2i+1,1
8 i
) ) Rl DA (221)
*¥  g,mn i=1 R
e 21,1
* -—
G, =0 . (222)

By similar methods we obtain

a__1
373 ’
R;  Ri+g

(223)

¢! = 7 ¥ (v

2 g,m,n i=1
and the g' tensor is symmetrical.,

To evaluate the G" term, the procedure is precisely the same as
to evaluate the G' term, exc%Pt that we relate this to equation (217).
It is convenient to express R explicitly in tabular form as given
in table 19 for easy reference wﬁen writing out each term of G". We
shall not write out the detailed expression as in equation (218), but
this procedure gives

8
no= -V o-nifx2 | -
Cxx 121( DRG] (224) ,
[
Gy 2 (~1) [x - Xy 4¥ 4] (225)
i=1
: 1
» = - - - A y
Gz 121( R LI SPPLIPY (226)
rd
8 ,
Gy, = _121 (-0 {v,z, - v, o2 ] (227)
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8
v - - i [p2 o g2
i, - Lt -]
i=1
where
a®x(i)y(i)
xy =323X 2013
ii RS
i'1
2 azx(i)2
X, = ———~—— ,
i R5
i,

’

2 a2 (i)2
i
_acx(ij)z(i)
ii 5
Ry

tal
N
i

and all of the sums in equations (224) through (228) have the sum over
£, m, and n implied. The G" is symmetric (this can be shown directly
from evaluating, for example, G;y and G;x independently).

TABLE 19. VALUES OF R+P FOR DIFFERENT SIRES IN SCHEELITE?

Site Py py Py R « P

1 u v w x{(1ua + y(1)v + z(1)w

2 v -u - x(2)v ~ y(2)u - z(2)w

3 -u -v w -x(3)uc ~ y(3)v + z(I)w

4 -v u -w -x(4)v + y(4)u - z(4)w

5 a v w x{5)u + y(5)v + z(5)w

6 v -~u - x(6)v - y(6)u - z(6)w

7 u -y w =x{7)u ~ y(7)v + 2(7)w

8 -y u ~w -x(8)v + y(8)u -~ z(8)w

9 u v - x(9)u + y(9)v - z(9)w

10 v -u w x(10)v = y(10)u + z(10)w
11 -u -V -w =x(11)u - y(11)v - z(11)w
2 -y u w =x(12)v + y(12)u ~ z(12)w
13 u v - x(13)u + y(13)v =~ z(13)w
14 v -u w x{14)v - y(14)u + z{14)w
15 -4 -v -w =x(15)u - y(15)v = z(15)w
16 -v u w -x{16)v - y(16)u ~ £(16)w

ax(i)'l+si _.xl’ y('i).m+gi-yll z(i)-n+zi-zl.
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The equations for G' and G" were c¢alculated for several lat-
tices and the results are given in table 20, The crystal_axial Tield
components, A,,, were computed for @aWO 4 using a = 2.4 A" and oxygen
charge of -2e, and using a = 0.24 A~ and oxygen charge of -e. The
results are shown in table z1 (Morrison, 1976).

After the above work had been done, the dipole terms in the
A were programmed for a zomputer for all the 230 space groups. In
the program any number of inequivalent sites can have an associated
dipole moment (we only considered one type of site above). Recently the
members of P. Caro's group in France and G, F. De S&'s group in Brazil
(Faucher and Malta, 1981) have included the dipole end quadrupole moment
in a self-consistent manner for LaCl; and have found that with the
reported values of the dipole and quadaupole polarizabilities the re-
sultant Anm is much larger than Anm or Anm'

5.3 Self-Induced Effects

When a rare-earth ion is immersed in a solid it is possible for
its electrons to experience a field due to the reaction of the medium
back on the electrons. Both this type of field and the external fields
due to the point charges of the medium can exist. This reaction is
identical to the classical problem of a charged particle interacting
with its induced image in a conducting plate or sphere. The interaction
was recognized by Judd (1977}, and it was he who suggested the polar-
ization of the ligands as « possible source of a two-electron crystal-
field interaction. 1In this section we shall consider the development of
this interaction as derived earlier (Morrison, 1980), using the same
technique used in the earlier work. 1In later gections this interaction
will be developed in a more general way, deriving the miltipolar inter-
action.

. We consider an ele~tron at T on a rare-earth ion and a ligand
at R with polarizability a. The electric potential created by the
el=zctron is

¢ = —— . (229)

+ >
IR-r|

The electric field at the ligand is

>
E=-V¢ .

whege VR indicates that the derivative should be taken with respect
to R. Then,
> e(R-T)
E =—;~T—3—- . (230)
IR-r|
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The dipole moment induced on the ligand is given by
p=of , (231)
where a is the polarizability of the ligand.

Now if we consideg. a dipole at some arbitrary origin, the
electric potential at point R1 from that origin is

Ed
*R

ke R4

¢1 = - hd (232)

R

-

To find this potential at the electron itself, we let §1 = -(ﬁvg). Then
equation (232) becomes
Be(R-2)
b, = AT (233)
1 +,3
IR-r|

L 4

The energy of the electron interacting with this potential is given by

+ > -@
U(rrR) = 2 ¢1(r)
(234)
> > >
- & Re(Ror)
2 R-zp?
where the 1/2 is due to a self-interaction. We can write i
R-T 1 '
A = .y . (235)
1%-213 RO&-21
Then equation (234) becomes
> > - > i
U(r,R) = — P VR N ' (236)
IR-r |
and similarly ,
> 1
E = aV - (237) .
B R-7)

Using the result of equation {(237) in equation (231) and substituting
the result into equation (236), we have

14 2
! > > -a 1 1
U(x,R) =-— afV -(? ’ (238)
2 <R |§-¥|> R |§-¥|)

‘
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where V_ operates only on the function on its immediate right. To [
further reduce the result given in equation (238), we consider the
operation

2 2 2
v ('l!,ﬂlz) =9V, T, 2(v¢1).(v¢2) . (239)
If y, and ¥, satisfy Laplace's equation (which they do), then

V(0,0,) = 2(79,)+(,) . (240)

If we identi§y+w1 and wz with 1/|§ - ;l in equations (238) and (240), we
can write U(r,R) as

“aez vz 1
4 R 'ﬁ‘;lz

U(E,R) = (241)

To proceed further we must expand the factors on the right side
of equation (241). irst we notice that

Iﬁ-;lz = R2 + r2 - 27-R

R2+r2 L (242)
= 2Rr[ 2RT - r’R] .
If we let
2 2
R +r
t= =T (243) ‘
then
1 _ 1 1
> + 2 2rR *t-z) (244)
o A |R~r|
with z = reR.
The expansion
T = ] (anenger(a) (245) f
is given by Rainviile (1960); the leading term for large t is
n 2
Q (t) a-—;—f—;(—’-‘-l-z——« . (246)
t (2n+1)!
71
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From equation (243) we have .

22n+1‘nl)2 rn+1
25 * G i (247)
for large R.
Substituting the result of equation (247) into equation (244)
gives
2n 2 n
: 1
{ 5 = 2 (“’Lr; P (2) . (248)
3 | Rer | (2n)tR
From the Legendre addition theorem, we have
P, (z) = P (r*R)
" 5 249)
= C. (r)C* (R) (
ng nm nm
and
—1. Z 2n 2._1.'3__0 (.)C* (ﬁ) (250)
= r .
|Rur|2 n‘m (2n)! RA*2 “nm nm
The remalning necessary operation is V;, which can be written j
*. 2
2 1 4d 2 4 (L)
Ve o= — S (R —) - A, (251)
R R2 dr dr R i
The only term in equation (250) that this operates on is ;
oY) Chm(R) (252)
Using equations (251) and (252), we have
2 [,.~n—-2 2y ] = + + n+1 o ;
R [ Rog ] - [eie) - atmen] e (253 -
Finally, // 4
2 [ p=n=2 - + - ) '
V2[R c;lm(a)]=2-;1r};¥-c;m(n) / (254) (
where we have used
(2)%c__(R) = n(n+1)C__(R) (255)
nm nm !
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? a result we discussed in gection 2.1. The result in equation (254) )
¢ subastituted into equation (250) gives K
'
¥ 52
8 n+1 n

’ r 2 1 (nt)(n+1)! r "

) 5 v - (r)c* (R) . (256)

f % |R—r|2 nm {2n)! Rn+4 nm

tra e ST

The result given in equation (256) is substituted into equation (241).
This result, when summed over all ligands at ﬁ with polarizability Gy

. produces
' 2 2n+1 c* (R,) .
- e 2 ni(nt1)! nm* 3’| n
. Utr) = ——= ] N Ty a |f S - (257)
nm R
3 3

j ' If we write equation (257) as we have previously done with the point-
' charge model,

ur) = § (aSI)* ¥ (r) , (258)
nim
we have ( )
3 2 2n+1
: SI _ (e.)2 ni(n+1)l j )
4 Aom ( 4) {2n)! z Rn+4 ’ (259)
j

which are the self-induced crystal-field components due to induced
dipoles only. Higher order multipole moments can be induced on the
ligands, and these multipoles will contribute a correction. From pre-

vious experience, we should anticipate the total self-induced multipole
fields to be of the form !

- -]
AST o 5 a1k (260)
nm k=1 nm

with the result above being A (1).

As in the point-charge model, if we express all lengths in A
and ay in A3 then equation (259) becomes

y
’ a 2n+1 a,c_(R,)

SI - -|-2 8] 2 nt{n+1)! {4 nm* "9

A (1) (8—-“ x 10 ) TSN !~ ' (261)

o i Ry

to express A 1n units of cm 1l/A" (a,/87 x 108 = 29,035).
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6« MISCELLANEOUS CRYSTAL~FIELD EFFECTS

6.1 Judd's Interaction for Two Electrons

The interaction considered here is a development of a sugges-
tion by Judd (1977) concerning a possible origin of two-electron crys-
tal-field effects. Specifically, Judd suggesied that such terms would
arise 1f one of the electrons in the configuration 4f" polarized a
nearby ion, and the remaining N-1 electrons interacted with the induced
maltipolar moments. The investigation of this interaction was performed
later (Moxrrison, 1980), assuming only a dipole polarizability. The
interaction for two electrons that resulted is

V(1,2,R) = ] F(abk)r}C,,(rq) r30,,q-q(T2)
aa
b,k.q (262)
cE (R)
x <ala)b(g-a)lk(q)> ;%%SIZ

where

2
and a is the dipole polarizability of the ion at R.

2
F(abk) ='-GxfL)(a(O)b(O)|k(0)>[(a+b+1)(a+b+2) - k(k+1)] -,

The development of the result gliven in equation (262) was
similiar to that given in the derivation of the self-induced field in
section 5.3. For the full multipolar result we shall use more general

methods.

> The electric potential of an electron at ?, as gseen at a ligand
at R, is

o(R,) = 5= (263)
IR1|
where
R
1—- r1 .

The multipolar inducing field E  at §1 can be defined by

(264)

¢(§1+;) =-) E;mxncnm(;)
nm

By expanding equation (263), we obtain

L)

. o oxn(Ry)x" .
$(Ry+X) = - ] (-1) ‘m;;ﬂ— Com(X) (265)

nm 1
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then comparing equation (265) with equation (264) gives

n - n+1 "
E = e(=1) Cnm(R1)/R1 5 (266) 4
The multipole moment, Q, ., is given by
f‘ m = anEnm ! (267)
' where the multipole polarizability is o .
i 1Y
; ) )
; g The electric potential at an arbitrary point 33 from a multi-
i é« pole distribution is given by
oy -
. * ¢ (R
4 4 > Qnm nm( 3)
| % ¢Q(R3) =] /" (268)
- R3
f % and the energy of an electron at ;2 interacting with the multipoles is
‘( > >
: U = -edg (R; = -R,) (269)
; + +>
‘ with R2 =R - Tye From equation (268), we obtain
{
S Q=1 1 (R,)
: U = -e _nm.__.._.qm___z_ . 270
; gm Rg+ ( )
\ Now from equations (267) and (266) we have
Q — 1 n c (R )
; am = o (-1)" Bl (271) |
! 1 ‘
% which, when substituted into equation (270), gives
3 i u(,2,,R) = - § Sﬁm&éll Enmiéal (272)
3 b B3 X e nman g+ R+ g -
o 1 2

If we write
R) , (273)

we have N a

o' (27, R) = e®a ] IR

/
;‘é
i
3

. (274) é
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If we were congidering the self-interaction, at this point we would
let R, = R, and take half the results. The sum on m would then collapse
to unity ana u(® (ryrrq,R) = -e®(q/2)/R{™F2,

However, the two-electron interaction is more complicated. We
use the two-center expansions to obtain

c* (Rq) 1/2 riCaq(rq) ~
'ﬁﬁéTl_' = Z (Za;in) <a{a)n(m)|a+n(atm)> —lggfgr%- c;+n,a+m(R) ’
1 aa
(275)
where 51 = §~;1, and
cnm(ﬁg) ¥ (2b+2n 1/2 - ESS&ELEQl R
T Ls (“%5°") <n(m)b({B) |b+n(B+m)> “b+nt Ch+n, p+nlR)
2 (276)
where

> >
ﬁz = R-r2 .

As indicated in equation (272), equations (275) and (276) are
to be multiplied together: When these two equations are multiplied, the
two spherical tensors in R can be recoupled as

-~ -~ _ _ wm
°§+n,a+m‘R’cb+n,s+m‘R’ = (=1) E <b+n(0)a+n(0)|k(0)>
(277)
x <b+n(B+m)a+n(-a-m)lk(B-a)>Ck'B_a(R) ‘
where we have used
c;+n,a+m(R) = (=1) Ca+n,-a-m(R) . (278)

It should be noted that the resultant projection in equation (277),
[Ck' -a(R)]' is independent of m. Thus with a proper recoupling of the
C~-G 1in equations (275) and (276), the sum over m can be performed.
Selecting the independent terms from the product of equationa (275) and
(276) and the result of equation (277), we have

s = ¥ (-1)™%a(a)n(m) |a+n(a+m)><n(m)b(B) |b+n(s+m)>
m (279)

x <b+n/B+m)a+n(~-a-m) | k(B-a)> ,
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which, when further reduced, gives

1/2
u™ (2,2, R) = -e?q, za z <b+n(0)a+n(0) 1k (0)>[ (25420 )(2b+2n)]
b8 (280)

. (R, )SC q_o(R)
X r?caa(r1)rgcgs Rg+§+2n+2- .

Thus the final desired result is obtained if we know S. In equation
(279) we rearrange the C~G as follows:

- 1/2
<a(a)n(m)|a+n(a+m)> = (-1)37¢ (2222177 (5 (_g)atn(atm) In(m)>

(281)

1/2
) <n(m)b+n(-g-m) |b(=B)> .

<n(m)b(B) |bn{+m)> = (~1)"™™ (Zgﬁf%il

We then recouple the two C-G on the right to give

<a(-a)a+n{a+m) In(m\><n(m)b+n(-p-m) |b(~8)>

= Z Y(2£+17)(2n+1) wW(a,a+n,b,b+n;nf)<a+n(a+m)b+n(-p-m) | £(a~p)> (282)
£

x <a(-a)f(a~B) |b(=B)>

The sum on m can now be performed (note that the phase, (~1)®, in eq
(281) cancels the (-1)™ in eq (279)) if we change the phase in the first
C~G on the right side of equation (282). This then fixes the sums on f
at k. Thus

2
S = (-1)k-b+n[ 2a+2n+1 2b+2n+1 ]1/ /KT
(283)
x W(a,a+n,b,b+n;nk)<a(-a)k(a=8) |b(=-B)> .

The C-G in equation {283) can be rearranged to give

/2
S = (-1)°[(2a+2n+1)(2b+2n+1)]1 W(a,a+n,b,b+n;nk)<a(a)b(B) |k(a=p)> .
(284)
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If we let

Fn(abk) = —(c:hez)<a+n(0)b+n(0) {k(0)>Y(2a+2n+1) (2b+2n+1)

{285)
3 i
3 x W(a,a+n,b,b+n;nk)[(2a§§n)(2b;§n)]1/2 ' ‘
: then, substituting into equation (280), we have
(n),+ > >y _ ab ‘ - - ~
o U (r1r2,R) = 2 Fn(abk)r1r2 } <a(a)biq u)Ik(q)>caa(r1)cb’q_a(r2)
a,b a -
k,q
*
Ck (R) (286)

’

X Larb+2n+2

which is the final form of the two-electron multipolar interaction. To
obtain the result given in eguation (262), we wdould have to relate
<a+1(0)b+1(0)|k(0)> to <a(0)b(0)|k(0)> and evaluate W(a,a+1,b,b+1,1k),
both of which can be found in Rose (1957: 47, 227). If this is done,
then equat%gn (286) will reduce to equation (262), In a solid the

ligands at R are such that, when the sum is performed over the ligands, 1
only certain k and g survive. Much of the above derivation has been ;
given by Judd (1976) in a different context, and many of his elegant
techniques could be used to simplify the resulting expressions. For
example, using Judd's notation (1975), equation (286) becomes

{n) > b ” * - +b+2n+2
v (z,5,.R) = ngn(abk)r:rz[ga(r1)Eb(rz)]kcgk(R)/Ra nre o, (287 !
k |
where ‘

[Qa(;1)ﬁb(;2)]kq = ; <ata)bla-a) k(q)>Caq(rq)Cp, q-a(r2) -

The tensor in orbital space, given in equation (286), ’,

Ty g(aP) = z <a(u)b(q-a)Ik(q)>Caa(r1)Cb’q_a(r2] ,

SRR Y N P RO

(288)

should be considered carefully. For a fixed value of k the number of é
terms in the sum over a and b is restricted by a + b ¢ k; for equivalent
electrons a8 and b are restricted to even integers; and for 0 ¢ (a,b)
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< 6, the total number of terms is not excessive. But since a and b can
reach the maxiwum value of 6 for the configuration 4f", the value of k
in the k sum (similiar to the lattice sum) must go up to 12, that is, k
< 12,

If as in previous work (Morrison, 1980) the sum over all the
electrons is performed in egquation (286) along with the sum over the
ligands, the results are

™) =12 Tu(ELELR) (289
i3 1

R

where the factor 1/2 accounts for the self-interaction terms that are
present when an electron interacts with its own induced multipole, as
well as for the interactions that occur twice when i # j. This inter-
action contains a large number of corrections to the free-ion param-
eters; a few of which shall be discussed in the following.

6.2 Slater Integral Shifts

The Slater integrals for the free-ion interactions are given by
the Coulomb interaction as

2
o= ] 22—, (290)
i>5 lri-rjl

which for equivalent electrons can be written

= 7 r%cs (;j)c

(£,) (291)
K,q kq i

kq

where

k
(k) 2 (o 0 r¢ 2
F = e fo fo rk+1> [an(r1)an(r2)] dr1dr2 .

Since the interaction represented by equation (291) is spheri-
c?%}y symmetric in the space of all the electrong, corrections to the
F can only arise from terms in an interaction that are spherically

symmetiric in the space of the electrons. Thus, in equation (286) if we
let k = 0, we have such an interaction, and the following results are

achieved:
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F,(ab0) = -o e®catn(0)a+n(0)|0(0)>/(Za+2n+1) (26+2n+1)

a 1/2
X W(a,a+n,a,a+n;n0) [(ZZ;Zn)(Zb;gn)] (292)
P -%ez(_.‘ )a+n(2a+2n ]/ /2"a+2n+ : .
where we have used
ca(a)b{-a)[0(0)> = (-1)?"*/v/2b+1 8am (293)

and
n 1/2
W(a,a+n,a,a+n;n0) = (-1)"/[(2a+1)(2a+2n+1)] .

Then equation (286) becomes

c* (r,)c. (x
Jagh 1/-aqr 27
(n)(r1;r2,§) = "Qnez Z (2a+2n) ;r?r; a £2;22n+£ ) ’ (294)
which is the same form as equation (291). Thus,
Aar'K) o -7 (i)e Z (2a+2n) [<ra>]2 (295)
n { " R2a+2n+2

i
for the Slater integral shifts due to the electron multipolar interac-
tion with the ligands of multipolar polarizabilities a

6.3 Shifts of Energy Gap 4f -4f " 'ng

The shifts in the energy gaps between the atNogfN-Thg  ais-
cussed here are dependent on one-electron operators, and it is best to
begin the discussion by returning to equation (274) and proceeding from
there. As mentioned following equation (274), the self-interaction is
obtained by letting ﬁz = R, in equation (274), obtaining

2
(n) + e % 1

ER == o (296)
R

where R, = R - £. The quantity Rﬁn

1 2 in equation (296) can be expanded
as in equation (242):

R2M*2 « [R2 4 r2 - 2R (297)
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or
R.’12n+2 = (2Rr)n+1[t-z]n+1 , (298)
where
v = (rR%+ rz)/2rR (299)
and
z =reR . (300)
Then we have
U(n)(;,ﬁ) - - ¢ % 1 1 . (301)
(2Rr)n+1 It_z|n+1
the expansion
;%; =} (2k+1)Q, ()P, (2) (302)

k

is given in Rainville (1960: 182). Also we can write

n .n
1 =1 4 1 (303)

+ - L]
(t—z)n 1 ni dtn t~z

For our purposes here we want only the k = 0 term of equation (302)
(Po(z) = 1}« From equation (301) we know

2
(n) ~® %n 1=t o
U (r,R) = Q (t) . (304)
2 (er)n+1 ni 0

By using equation (303) in equation (302) with k = 0, we get

Q(t) =€+t L, (305)
and
) Qén)(t) x (=11t 4 (-ny® igiéll e, L, ({306)
] f Using equation (306) in equation (304), we have
—ez a
1 1 + +
'™ (r,r) = - n _ [ - (n 1);232)} . o
(2¢R) t 6t
81
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For large R > r, equation (299) gives

R
t oy
Thus equation (307) becomes
-eza o
(n) _ n 1 (n+1)(n+2) r°
voo(r,R) =5 2n+2 3 2n+a (308)

The result given in equation (308) is a generalization of the
result (Morrison, 1980) for & ligand with dipcle polarizability (n = 1
in equation (308)). Thus we have, for n = 1,

- 1
o We,my = 222 1420, (309)
2 s 6
R R
where we have written ., = a. In the remainder of this section we shall

discuss only the dipole part of the interaction as given in equation
(309).

If we let W, represent the lowest energy of the 4£N confiqu-
ration and let W,y , represent the corresponding energy of the a0 Mg

configuration, we may write w4f = w%f + A4f and W%.l, = w%.p. + An'R"
where Nof and w%,z, are the corresponding quantities in the free 1ion
and A and An'l' are the shifts representad by equation (309). Thus,

we can write

0 qez 2 2
Begr = Bggr = -——RG (<r Yeqr = <F >4f) , (310)
where <z?> . = <4fN'1n'£'|r2|4fN'1n'2'> and <r2>4f = <4fN|r2|4fN>.

The result in equation (310) is for a single ligand at R, and if we let
there be Zi ligands at Ry with polarizability oy we have

2
0 . %3%4€
Bego =Llgpr =0, ¥ “~;g“—' ' (311)
i
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where P <r2>52' - <r2>4f. Since, in general, <r2>f  Ls greater than
(r2> . we have the result, observed experimentally, that the free ion

interconfigurational energy gap is reduced when the ion is embedded in a
solid. This result is intuitively obvious, since the presence of the
polarizable ligand tends to counteract the centrval potential of the
rare-earth ion.

Recently, Yang and DeLuca (1976) have measured the energy
difference of the lowest 4tV and 4fN"15d configurations for Nd3+, Er3 .
and Tm3+ in the host materials LaFB, YF3, LuF3, and LiYF, (table 22),
The distances of the nearest neighbor ligands are given in table 23 for
the compounds reported by Yang and DeLuca. We computed the values
of 8 = Ziaiziez/Ri from the results of table 23. With all quantities
measured in angstrom units, § = CoX(aizi/Ri), where C, = 116,140 and
the units o% S are cm™1/(A)3. fhe polarizability of flourine is assumed
to be 1.0 A7, Experimental values of g, were computed from the results
of table 22 and the appropriate value of S. If it is assumed that the
values of g, are dependent on the ion only, these ¢, should be rela-
tively host independent, With this assumption, the average value for ¢
given in table 24 can be used to calculate the energy shifts of any
host, if the x-ray positions and the polarizability of the ligands are
known.

TABLE 22. EXPERIMENTAL ENERGY (IN UNITS OF 103 cm™!) OF LOWEST
ENERGY LEVEL OF 4f8~154 ror FREE ION, Ad; AND Agy

Ion Free ion? LaF,? vrP LuF3b LivF,?
Na 70.1 60.0 58.4 57.1 54.6
Er 7%.4 €4.7 64,3 63.8 62.5
T 74,3 64.4 63.4 63.0 61.5

aSugat and Reader, 1973, Chem. Phys. 59, 2083.
bYang and Deluca, 1976, Appl Phys. Lett. 29, 499.
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TABLE 23. LIGAND DISTANCE, R {A), AND MULTIPLICITY, 2, FOR
COMPOUNDS LISTED IN TABLE 22?

Compound Ligand distances (multiplicity)

LiYF4 24245 ()(4) 2.293 (X4) - - - -

LaP3 2.246 (x2) 2.416 (x2) 2.443 (x1) 2.49 (x2) 2.64 (x2) -

YF3 24253 (x1) 2,253 (x1} 2,266 (x2) 2.299 (x2) 2.323 (x2) 2.5%95 (xi)
LuF3 2,191 (x1) 2,243 (x2) 2.257 (x2) 2.257 (x1) 2,277 (x2) 2.618 (x1)

x-ray data used in these calculations are from C. Keller and H. Smutz,
1965, J. Inorg. Nucl. Chem. 27, 900, for LiIYF,; A. 2alkin, D. H. Templeton,
and T. E. Hopkins, 1966, Inorg. Chem. 5, 1466, for LaFq; and A. Zelkin and D.
H. Templeton, 1953, 7. Am. Chem., Soc. 75, 2453, for YF, and LuFj.

TABLE 24. SUM § (Cm-1/A2) OF EQUATION (313) FOR VALUES IN
TABLE 23, Agd - 8gq FROM TABLE 22, AND g, COMPUTED FROM EQUATION (311)

2
Na? Er? T
Compound S
Q0 - -

8¢a~8¢q O, ba-Beq 9, Ad3=8eq %
LiYF, 6815 15500 2.274 12900 1.893 12800 1.878
LaF, 5184 10100 1,348 10700 2.064 9900 1.910
YFy 6898 11700 1.696 11100 1.609 10900 1.580
LuF, 7516 13000 1,730 11600 1.543 11300 1.503
Av o - - 1,912 - 1,777 - 1.718

2

Ayang and DeLuca, 1976, Appl. Phys. Lett. 29, 499,
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The results obtained for the three ions studied here agree
qualitatively with what would be expected from the usual lanthanide
contraction (Peisfeld and Jorgensen, 1977), that is, oz(Nd3+) > 02(Er3*]
> o (Tm3+). A more extensive comparison of equation (310) with the
experimental data in oxide and chloride host materials 1is necessary
before any quantitative claims can be made. Nevertheless, the results
indicate that equation (310) can be a useful rule of thumb indicating
the host dependence of the energy spacings between the various configu-
rations of rare-earth ions.

The results here can be used to predict a host-dependent spin-
orbit parameter by using equation (309) in the usual spin-~orbit Hamil-
tonian for a central potential:

22 Z.a
e 171
g = (312)

R,
i

Ag =

2.
vl

[o]

Similarly, the result given can be used to give host-dependent Slater

parameters as
2
(k) @2 k_ 12
= -1 S Ll
i Ri

(313)

where the various quantities are the same as in equation (311). ‘The
result given in equation (313) has been noted (Copeland et al, 1978) for
a general two-electron interaction and is intimately related to a pre-
vious result where the ligands are replaced by an isotropic solid. 1In
riew of the difficulty of chonosing the parameters used in the result
given ir Morrison et al (1967), it would appear that egqguation (313) is a
preferable form.
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APPENDIX A

The following egnations include the most commonly used relation-
ships neesded for arriving at the results given in the main body of the

report.

A-1. CLEPSCH-~GORDAN COEFFICIENTS

! A-1,1 Relation to 3-j Symbol

catalb(8)|oty)> = VTeFT (-1)3PTY(G R 9) (a-1)

gs A-1.2 Symmetry
i cala)b(B) [ely)> = (=113 a(~a)b(-B)|c(=y)> (A=2)
e (=12 Cwm(mrata) cty)> (A-3)

- (-1)"“,,§§_}~} cala)e(=y) [b(=8)> (A-4)

(In eq (A-1), (A~2), (A-3}, and (A-4), a + B = Y.)

A-1.3 Orthogonality

T

~ 6ot = J <a(a)b(y-a)fcly)><ala)b(y-a){c* (v)> (A-5)
i a
f Saardyyr = Z <a(u)b(y—u{|c(y)><a(a')b(y'-u')lc(yv)> (A=6)
A-1.4 Special Values
1/2 .
ca(0)b(0)|c(0)> = (-1)8/2 (2&-1]) L(s) (A=7)
s+ (s, )T(s5)T(s5)
where
8, = ~a+b+c, 8, = a-b+c, 84 = a+b-c, 8 = atb+c
and 8 |
. T(s) - [.2-) .

/ar

(A-8)

ca{a)b(B)|a+b(a+B)> =

@) = srdtemT -
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- <& (0)k+2(0)|2(0)>
] - -(k ) [ ka2l -k ]1/2 <% (0)k(0) |2 (0)> (A-9)
P A-2. WIGNER-ECHART THEOREM ‘
E : A-2.1 Tensor qu (in L Space) Only
E <L'M'|qu|LM> = <L(M)k(q) L' (M")><L U T, hL> (A-10)
E .
E Kk
¥ A-2,2 Mixed Tensor T&
q -
b K in S space projection A
k in L space projection g
3 <L'M£S'Mé|T§:§|LMLSMS>
= <r{My)k(q) L' (M) ><s(Mg)k(A)[s(mg)> (a=11)

1 x <L's'T™KiLs>
]
i A-2.3 Hatrix Elements of Crystal Field

<J'M'L'S'|H3|JMLS>

=) B} <T(M)k(q)|T*{M")><I'L'sl vy gLsw 2+1e0C 08> (A=12)

kg d
TR (k) DT+t IS T,! ' Uk
<J'L'SHU" TN JLS> = v 2J+IW(KLJI'S; L'J) (L*SIUTULS) (A-13)
(The matrix elements (L'SMUkILS) are tabulated in Neilson f
and Koster, 1964.) L

A-2.4 Matrix Elements of Spin-Orbit Interaction

CI'MILIS' Ky | OMLE> = =L (8 (£+1)(2041)11/2 6 11,6
x W(1SL'J;S'L)
(A-14)
x (L's'¥viliLs)
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(The matrix elements (L'S'uvllﬂLS) are tabulated in Neilson

and Kosteir, 1964.)

A~3., COMMUTATION RELATIONS

A-3.1 HAngular Momentum Operators

[2, (20,2, ()] = VT AT 1040, ()6

[, (isy (] =VZ <1 [1usv) sy, (1)8
=) 2i), $=] (i), ¥ = 148
i i
[2,60.0,] = (2, Grn] = [2,(3)02,()]
[s,31,9,] = [s,3rus,] = [ (3),s ()]
A-3.2 Spherical Tensors

Crq(d) = Cq(y) =\f§§§; Yeo(F1)

(3,06 1] = YREHAT k(@100 [k(aw)>g (1)

[Vy £(ric,] = l- <)k(@) [k! (qH)><1 (0K (0) [k (0)>Cyy oy,

x [%§'+ £§f(r)[k(k+1)(2k+1)]1/2 W(kik'1;k1)

[vu,rkckq] = k(e 12 ki@ () k=1 > ey,

-K~1
[vu 'T ckq]
= [ (ka1 (24012 ki@ 1) et (@ >r* ey

*n equations (A-21) through (A-23), qu = qu(r)-
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A-4. RACAH COEFFICIENTS AND 9-j SYMBOLS
A-4.1 Working Definition

<a(a)b(B)|ei{a+B)><e(a+B)d(§)|c(atB+s)>

(A-24)

= ) /T2e¥T)(2E+1) W(abcd;ef)<b(B)A(8) |£(B+6)><ala)E(B+8) |c(atB+8)>

£

("1 )f-b-dd ng.

W(abcd; 0f) =
YTaB+1)(2d+1)

A-4.2 Orthogonality

7 (2e+1)(2f+1)W(abcd;ef )W(abcd;eq) = sfg
e

A-4,3 Relation to 6-j Symbol

a+b+c+d{a b e}

wW{abcd;ef) = (-1) dcf

A-4.4 9-j or X Symbol

X(abc,def,ghi) = ] (2k+1)W(aidh;kg)W(bfhd;ke)W(aibf;ke)
k

' _,Ctg-a-e
6cf§gh( 1)

vV (2c+1)(2g+1)

W(abde;cg)
X(abc,def,gh0) =

A-5, SPHERICAL BASIS VECTORS

A-5.1 Unit Vectors

Sy = (o & 18,) V7

Yy

~
Boﬂez

e* = (-1)Ve_

u U
e;-ev - Guv
e xe, = -i/Z <1V 1 (usvdde
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(A-28)
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(A-30)
(A-31)
(A-32)

(a-33)

(A-34)
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A-5.2 ‘Ezgmgles
- ) Sazu (A-35)
! U

iy AR T e ]

e

- §- g ots,, (A-306)

. - = - U -3
1.3 g L8, g (-1)¥2_ s, (A=37)

£ = ) €40y, (F) (A-38)

A-5.3 Generalizations

Let Aa“, Bbs' etc, be spherical *ensors and define

(A and B commute. )

{a, Eb}cr = § <a(a)b(y-a)lc(y)> APy yea

Then

B, By = (=1)2 /Za¥ {aa°Balo

{RaBo)eCe = (=12 %{pa, }oo,
- VT (acohmy

- -2 VI (Complea -

A-6. EXPANSIONS

A-6.,1 Addition Theorem

Py (FsR) = ; Cpq (F)C84 (R) (A-39)
b - (P, is a Legendre polynomial.)

Cag(F)Cpg(F) = z <a(0)b(0} [k(0)><ala)b(B) |k(a+8)>Cy o(F) (A-40)
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Tyl £1/¥2) ..i <ale)b( Q=) [K(Q)>C, ()T, o (7)) et
= ah1jcb(r2)]KQ
A-6.2 Jingle-Centey Expansion
2K, o (F) G, (R)
1 - 2 "~ kg q
|R-t | tq RE+1 (A-42)
=]2< ;)-(:1- Ch(r)-\. (R) (A-43)
A-6,3 T%Two~Center Expansions
2a+2b)1/2 S e a
ﬁ-—x-3| =L (P30) 7 [eat0g, ],y Carp(R) ?t% (A-44)
1 - I\
TR ; = X| Cieq (¥ )G (R-X) (A-45)
Ck (R-x)
|R—x | %+ (A-46)
1/2 a ~ a
- ;u (232297 <ataix(a) |ask(a+a) 38y (X)C, g o 4q (R) —Zpry
A-6.4 Miscellaneous Expansions
oM R-E 2 - a
SEET T L (2a+1)1, (Ar)k, (AR)Cog (F)C4 (R) (A-47)
4

(i (z) =/7/2z Ine12(2)r kp(2) = /7 /%% Kne1/2(2)1 I and K are
Besgel functions.)

ix [R-F| R n
97@-— -2 (2a41)3,(Ar) [y, (AR) + 13, (AR)]Cpq (r)Ca, (R)

(A-48)

(ja and Y, are spherical Bessel functions.)
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B-1. INTRODUCTION

The dominant quantity in electrostatics is the electric poten-
tial. Once having found the potential, we can obtain all other essen-
tials by suitable operation on the potential. In particular, if the
potential, ¢(r), is given, then the electric field is obtained by taking
the gradient of ¢(r), that is,

E = -vetr) . (B-1)

In equation (B-1), it is assumed that ¢ is a function of the general
field coordinates r; however, since ¢ may also involve other coordinates
in a complicated manner, care must be taken to separate the field point
from other goordinates so that the gradient in equation (B-1) is with
respect to r. We shall always here interpret the gradient operator in
equation (B-1) to be taken with respect to the field point e

B-2. EXAMPLES

A few examples will suffice to clearly illustrate the above
points.

B~2.1 Point Charge at Origin

If there is point charge q at the origin of our coordinate
gystem, then the potential at the field point r is given by

q

¢ =——

|7
r = (x2 + y2+ 22)1/2 . (B-2)

The electric field for this simple system is given by -grad ¢, and is
Y

E = -'%T—_,,— . (B-3)
r
. since
j A F
i ';' had r3 . (B"")

The relation given in eguation (B~4) can be worked out in detail by
taking each vector component of V as

1 1
A S T AR L)

where |T] is given by aquation (B-2).
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The potential of a dipole at the origin can be obtained by
a slight extension of equation (B-2), If we assume the dipole is made
up of two oppotiitely charged particles, q and -q, located symmetrically
about the origin at ¢/2 and »3/2. respectively, the resulting potential
using equation (B-2) is

d q - q _
¢ =TS \ P ¢ (B-6)
lr-e/2]  lr+es2|
By noting that

(Zad/2] = [(Fad/2) (F48/2) )12 = (r4doE)1/2

ardé

63 = g L (B-7)

It is customary to let E + 0 and q +. @ in such a way that qE remains
finite and is the point dipole moment p. Then equation (B-7) gives

> >
d .
¢ =g—!- ' (B—B)
3
which can bhe and is taken as the potential at the field point 7 due to a
dipole of moment p at the origin. The potential given in equation (B-8)
can be written in a more compact and frequently more useful form using

equation (B-4) ovr

o0 = pev (B-9)
Iz

B~2.2 Point Charge a: R

We consider a point charge q@ now located at a point 1 frgm
the origin; we wish to evaluate the potential at the field point r.
Then

1

|&-£|

' (B-10)

¢'=

1lo
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B-~3. ATOMS AND MOLECULES

We now wish to find the energy of interaction of two charges in
the presence of a temotg polatizable ion. The coordinate system is such
that the charges q, at and q, at r have a common origin., The polar-
izable ion of charge Q 1s’located ai R such that R >> r, or r,. The
electrostatic potential at r due to the charge 44, given by equation (3~
2), is

q
@(;1';) - —:~1:~ o (B-16)
[z, -r|

Qp uge two arguments in the potential to signify the source point,
r,» and the field point, r. If there were no charges or sources other
than q, and q the energy of interaction would be

0(t,2,) = age(Eyt)|, ,
2
_ 99, (B-17)
|;1'¥2| ’

a familiar result. Thus we can write the energy of a point charge, qj
in a field whose sources are independent of q; as

u(g) = qe®H|, , - (B-18)
rﬂri

With these results the energy of the system due to the point charges
oaly is

q,4, q,Q 9,0

EEARATE A=
r,-r, -r, -t

o {B-19)

The energy given in equation (9-19) does not include the enerqgy due to
the polarization of the ion at To evaluate the polarization energy
we must first find the dipole mement induced in the ion. From equation
(B-12) (with R = r ) we have for the potential at r due to 94

4

¢(:1.;) =— (B-20)
|=-,

and from egquation (B-13):
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:
?
'? s
E r-rc,
| E(r) = 9 T3 . {B-21)
: turl
E The dipole moment at R in given by ¢
g P = aE(F) .
rrR

:
!
E B.x (B-22)
| - oq —
: 1 + 13

=X

where 3 ig the polarizability of the ion at R,

The potential at £ due to this dipole at 1 is given by equation

(B-14):
a B-r
07 () = B o ——— (B-23)
|&-2]
and the energy of interaction with the charge q, is
dr+ » >
u (r1r2) = q2¢(r) . {B-24)

r=r2

from equation (B-17). Substituting equations (B-23) and (B-22) into
equation (B-24), we have

4 (R-2,)e(R-2,) |
vd(#,%,) = -aq,q ey (B-25)
( 1 2) 122 '§0;1|3!§_32;3 ' ;
§
which is symmetric in the two charges and positions. Thus, we could §

have obtained the identical renult if we had used charge q, and its
field to f%pd the induced dipole and evaluated the potential due to this
dipole at r,. 1t is possible to extend these results to more compli- 3
cated systems, but if this is seriously intended the more elegant tech-
nigques given by Judd! should be used. The result given in equation (B-
25) was used to develop a two-electron crystal-field interaction?
following a suggestion of Judd.

1B, R. Judd, Math. Proc. Camb. Phil. Soc., 80 535 (1976).
2¢c. A. Morrison, J. Chem. Phys. 72, 1001 (1980).
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B-4. POSSIBLE APPLICATION TC UATALYGIS

Perhaps a more important applicaticon of equation (B-25) is the
application of this result to the theory of homcgeneous catalysis. 1In
homogeneous catalysis an inevrt gas (Q = 0 in eq (B-19)) is introduced
into a wixture of gases represented by q, and q,. We assume here that
q, and q, represent the charges on atoms 1 and 2 and the inert gas is to
speed up a desired compound formed by some combination of 4, and 9y
The interaction energy given by equations (B-25) and (B-17) is

(ERNCER

B me—e——— = q,q
+ 172 3 3
RN 2-2,1% (%2,

+ > )

U(r1r2 (B-26)

We see that if ¢y and q, are of the same sign, the interaction with the

catalyst at R is such as to reduce tge repglsion. To apply equation (B-

26) to the present case we can take r, = -r_ with no loss in generality,
‘ 2 1

and equation (B-26) becomes

q.9 _* . +
SR = a2 oo (RE/2) e (Re/2) (B=27)
]rl 172 + 3 + 3
|R-2/2| °|R+E/2|
with ; = {1 - ?2 = 2;1, where ; is the distance between atoms 1 and 2.

Thus if the two atoms have the same sign, the repulsive forces are
reduced; this reduction may be sufficient to allow the two atoms t¢ get
close enough to permit electron exchange, which may be necessary to
speed up a desired compound formed by some combination of q; and q,.

B-5. ELECTROSTATIC POTENTIAL DUE TO MULTIPOLAR DISTRIBUTION

In much of our work we shall need the expression for the electre-
static potential due to a distribution of multipolar moments, A
straightforward derivation »f the desired results can be obtained by an
application of the simple layg of electrostatics given above. If we
have a charge distribution, p(x), at the origin of a coordinate system,
then the electric potential at from the origin is

dp(r) = ——= (B~28)
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where d1 is the volume element at ; from the origin. The denominator
in equatfon (A-28) can be expanded in Legendre polynomials as

© n
1 : X
-—;——;—— = )‘ —n Pn( cos exr) (8-29)
|r=x| n=0 r
+* > »> >
where Gx is the angle between x and r and we have assumed |r| >> Ix .
By Legengre's addition theorem,
? ~ ~
- * -
Pn(cos exr) m,;_n C q(e)Ck (r) (B-30)

) A

+ >
where x and r are unit wvectors along x and r, respectively, and %t =
cos(erx). If we substitute equaticn (B-30) into equation (B-29), we
have

n
1 X - 4
——— * . -
> > Z n+1 Cnm(x)cnm(r) (B-31)
lr-xl nm r

In equation (B~31) we have dropped the limits on the sum, a technigque we
shall use throughout unless the sums are restricted, in which case the
limits shall be explicitly given. If the result given in equation (B~
31) is substituted into equation (B-28) we have

n
X
n+1

$(F) = [ atp k) ] C,n(XICH (£) (B-32)

n,m r

Integrating the results in equation (B-~32) produces

> - Qnm -
$(x) = ) —7 Cx (r) (B=33)

where we have defined the multipolar moment as
+. . n ~
O = [ o (x)x Cop (%) 4T (B~-34)
The definition of the nth multipolar moment given in equation (B-34)
agrees with the customary definition for n = 1 (dipole moment) but
differs from a number of others for a = 2. Frequently Qom is defined by

0, = [ et 2%c, ()] & (B-35)

we shall use conly the definition given in equation (B-~34),
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Since the electric potential is real, equation (B-33) can be
written

Q* C ( )
> * nm nm
$(r) = n%_n *-—:;:1 . (B-36)

We shall use the form given by equation (B-33) or equation (B-36) de-
pending on which is the more convenient in a particular problem.

FY
If the charge distribution p(;) is located at » from the origin,
the potential is given by

+
p{x) dt
$(¥) = [ —% (B-37)
| ax
{(=1) Q* C (r)
o(x) = nm rm , (B-38)

n+1
nm o

a result which could have been obtained from equation (B-36) by letting
T+ -r and notipg that Cpm(=T) = (=1)AC (). It should be noted that
the replacement r *» -r in equation (B-28) converts the denominator there
into the denominator in equation (B=37). .

We then have from equation (B-36) the electric potential at ; due
to a charge distribution at the orxigin, and from equation (B-38), we
hayg the electric potential at the origin due to a charge distribution
at r.

A second and independent definition of Q. is given by

%m = “nEnm ¢ (B~39)

where a is the nth-pole polarizability and Bom is the nth multipole~
1nducing fielde For n = 1 (dipole) we have

QUp = B ¢ (B-40)

which is the spherical representation of the relative
B = a% v (B=-41)
where a = ¢, is the ordinary polarizability and E the ordinary electric

field., If we write the vector relations in eyuation (B-41) in apherical
form, we have
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£ etk (B-42)
m im
m
= ".
e =l etpyy
m

(ugually Ein and p,. are written E  ard ph). Then, from equations (B-
42) and (B-41), we have
p1m = mE1m . (3-43)
The inducing multipolar field at a point can be obtained by a
suitable generalization of the electric potential at x in a uniform
field E, that is,

$ = —xoF
which when written in spherical form is
s = * . -
$ E Ey XC, (x) (B-44)

Thus we write the multipolar inducing field at R as

p(R4x) = -ng E;m(ﬁ)x“cnm(::) . (B-45)

which agrees with equation (B-44) for n = 1, As an example of the use
of equation (B-45), we consider a point charge qp at R whose potential
is
q
o(&) -T—‘f . (B~46)
We wish to find the multipolar expansion at the origin, thus:
q

¢(§+§) =
|R-x]|

’

(R)

$(F4%) = qq Zm —M-,— x"c . . (B-47)

The multipolar inducing field at the origin is given by comparing the
coefticients of xncnm(x) in equations (B-47) and (B-45), that is,

(R)

- -q, —m,'m— (B-48)
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Similarly, if we have the charge q, at the origin and wish the multi-
polar inducing field at ﬁ, the multipolar inducing field is

¢, (R)
E., = =qp(-1)" —%‘r‘}—ﬂ—- . (B-49)

If we have an ion at the origin whose nth-pole multipolarizability
is a the induced moment Qnm is given by

= -5
Qnm anEnm ' {B-50)

and from equation (B-48) we have
cnm(R)
Qnm = -anqo-—;EIT—- . (B=-51)

The potential at the point b2 of this induced dipole at the origin is
given by equation (B-36) to obtain

c* (R) C. (r)
— nm nm
¢(r) = n% - aan Rn+1 rn+1 ’ (3-52)

where, to repeat, R is the position of the charge qy and T is the field
point,

The following*problem illustrates all of the above. Assume a
point charge qp at r and a dielectric sphere of radius a at the origin
with dielectric constant €. The potential in the two regions is

¢, (r) =] a;mrncnm(;) , r<a ,

and

*
q0 bnmcnm(r)

+
|§“;I rn+1

By equating the potential at r = a and the derivatives

¢o(r) =

3¢y 3,
€3r |r=a = 3r |r=a
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(normal components of D are continuous), a,, and bnm can he determined.
From equation (B-52) we have

b m - 4 9oChm(R)
nm R+ ’
if we take

a = [n(e - 1)a2n+1]/(en +n+1) .

Notice that this o agrees with tha o given by Judd! (Judd's K is
our €).

If we assume that o, and a are known, then we can eliminate ¢

! from %, to obtain a2n+1

3na1

e ' a. = ’

n (n-1)m1 + (2n+1)a3

which could be used to estimate the a for n > 1 for an ion whose a, is
known and a might be taken as the ionic radius. Comparing equation (B~
52) with the expression for ¢, We have

b = (ﬁ)/Rn"." .

an =~ "% %cCnm

YE St P e g ), T e

lp. R, Judd, Math. Proc. Camb. Phil. Soc., 80 535 (1976),
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